TECH 01/2022/23 – GRABOUW: GREATER GRABOUW HOUSING PROJECT

ERF 313, GRABOUW

CIVIL ENGINEERING SERVICES:

PRELIMINARY DESIGN REPORT

PREPARED FOR

PREPARED BY:

Engineering Advice & Services Western Cape 8 St James Street, Audas Estate Somerset West Cape Town, 7130

Tel: (+27) 21 879 4992 | admin@easwc.co.za

DOCUMENT CONTROL

REVISION NUMBER	ACTION	DATE
0	Submitted to the client for approval.	09 December 2024

COMMENTS	NAME	DATE
Report Compiled by	C. van der Merwe Btech	03 December 2024
Report Reviewed by	J. Makhetha Pr Tech	04 December 2024
Amendments made by		

TABLE OF CONTENTS

1	ı	INTRODUCTION	4
	1.1 1.2		
_			
2		PROJECT DETAILS	
	2.1		
_			
3		CURRENT LAND USE AND LAND OCCUPATIONS	
4	1	TOPOGRAPHY AND GROUND CONDITIONS	
	4.1		
	4.2		
5	I	ENVIROMENTAL INVESTIGATION	9
	5.1		
	5.2		
6	1	TOWN PLANNING LAYOUT	11
	6.1	CONCEPT TOWN PLANNING LAYOUT	11
7	ı	EXISTING SERVICES	12
8	ı	PROPOSED INTERNAL CIVIL ENGINEERING SERVICES	12
	8.1	INTERNAL ROADS NETWORK	12
	8.2		
	8.3		
	8.4 8.5		
9	_	BULK INFRASTRUCTURE UPGRADES	
,			
	9.1 9.2		
	9.3		_
	9.4	BULK SEWERAGE RETICULATION	15
1()	INTERNAL SERVICES COST ESTIMATE	16
11	1 1	INVESTIGATIONS AND STUDIES	17
	11.	.1 RECOMMENDED STUDIES AND INVESTIGATIONS	17
12	2 (CONCLUSION	17
13	3 /	ANNEXURES	18
A	NNE	EXURE A: PRELIMINARY GEOTECHNICAL SITE INVESTIGATION	А
A	NNE	EXURE B: CONCEPT TOWN PLANNING LAYOUT	В
A	NNE	EXURE C: PROPOSED ROADS LAYOUT	c

ANNEXURE D: PROPOSED STORMWATER LAYOUT	D
ANNEXURE E: PROPOSED WATER LAYOUT	E
ANNEXURE F: PROPOSED SANITATION LAYOUT	F
ANNEXURE G: PROPOSED GENERAL SERVICES LAYOUT	G
ANNEXURE H: GLS BULK SEWER ASSESSMENT	Н
LIST OF FIGURES	
Figure 2-1: Erf 313, Grabouw - Locality Figure 3-1: Erf 313, Grabouw, Current Land Use	5
Figure 3-1: Erf 313, Grabouw, Current Land Use	6
Figure 5-1: Botanical attributes	9
Figure 5-2: Overall delineated extent of the ephemeral drainage lines, seep and unchanneled valle	y bottom
wetlands	10
Figure 6-1: Erf 313 – Zoning plan	11
LIST OF TABLES	
Table 10-1: Erf 313 Internal Services Cost Estimate	16

1 INTRODUCTION

1.1 TERMS OF REFERENCE

Engineering Advice and Services Western Cape (EASWC) were appointed by the **Theewaterskloof Municipality (TWK)** in July 2023, for the provision of Professional Services in relation to the **Provision of Professional Consulting Services for Grabouw: Greater Grabouw 7000 Housing Project** (Greater Grabouw Housing Project).

The **Greater Grabouw Housing Project** involves the planning an implementation for approximately 7000 households in the Grabouw area. As part of the appointment, and in summary, EASWC is required to plan and implement the accommodation of the approximately 7000 households by allocating them into the following housing project categories as applicable to the identified land parcels:

- Integrated Residential Development Programme (IRDP) Housing
- Temporary Relocation Area (TRA) Housing
- In-Situ Upgrading of Informal Settlement (UIS)
- Interim Services

Based on the scope as set out in the appointment of EASWC, the **Greater Grabouw Housing Project** is planned for implementation through the following identified land parcels:

Erf 8078, Grabouw
 Vacant Land

Erf 313, Grabouw
 Vacant Land

Farm 295, Grabouw Invaded Land

Farm 292 and 301, Grabouw Invaded Land

Erf 1314, Grabouw Vacant Land

Erf 505 and 793, Grabouw Invaded Land

In accordance with the project's planning, **Erf 313** has been identified as the next priority housing development area in the implementation of the **Greater Grabouw Housing Project**.

1.2 PURPOSE OF THE REPORT

This report aims to present a clear description of the anticipated scope for the implementation of housing on **Erf 313.** By assessing and determining the applicability, relevance, and shortfalls of the available base information, this report will present the design concept for **Erf 313** and its related applicable principles and impacts with a target to advance the Client towards an informed decision-making process regarding its progression for implementation as one of the priority projects.

The report will provide a coordinated output that incorporates considerations from currently available information and Professionals.

2 PROJECT DETAILS

2.1 LOCALITY

Erf 313 is situated within the town of Grabouw, in the Western Cape and can be located as shown in Figure 2-1, below:

Figure 2-1: Erf 313, Grabouw - Locality

2.2 PROJECT BACKGROUND

Based on meetings with the Client and all previous information availed to EASWC by the Client, it is evident that Erf 313 (and the Greater Grabouw Housing Project as a whole) has been ongoing prior to the appointment of EASWC. It was established that, during this period, the **TWK Municipality** initially commenced with the feasibility of **Erf 313** through a previously appointed Professional Team. During 2022 and 2023, this previously appointed Professional Team produced the following as part of their on-going preliminary feasibility investigations:

Pre-feasibility Report
 Element Consulting

Environmental Assessments FEN Consultants

Mark Berry Botanical Consultants

Bulk Services Assessment
 GLS Consulting

The Pre-feasibility and Bulk Services Report, as noted above, concluded that there is no existing sewer infrastructure for erf 313. Bulk sewer upgrades must be completed to create capacity in the network. Bulk water upgrades are not required and proposed water connections will be from the adjacent residential area of Snake Park and Dennekruin. Due to the Bulk sewer upgrades needed to develop erf 313, the project remained suspended as allowance had not been made at the time, for the identified upgrades.

By July 2023, the TWK Municipality had made enough progress in planning for the required capacity that they were ready to progress with implementation of **Erf 313**. However, at this point, the main Consultant from the previous Professional Team (Element Consulting) was unable to remain within the project hence the appointment of EASWC through the applicable procurement procedures.

2.2.1 ENVIRONMENTAL ASSESSMENTS

The previously conducted, freshwater verification and Botanical assessments, were finalised in September 2022 and August 2022 based on previous report dates. These reports were also availed to EASWC by the Client as part of the targeted continuity. EASWC re-engaged the service providers who conducted the studies and established terms of continuity in order to reaffirm that the studies they conducted in 2022 (as mentioned above) are still valid. Subsequently, it was confirmed that these reports remain valid, and have been incorporated it into the current planning stages. This is covered in later sections of the report.

2.2.2 BULK SERVICES ASSESSMENTS

Bulk Services Assessment Reports were conducted in September 2019 and September 2022 as part of the previous Professional Team. These reports were also availed to EASWC by the Client as part of the targeted continuity. EASWC has confirmed with the Client that these reports remain valid, and they have been incorporated into the current planning stages. Further detail is covered in later sections of the report.

3 CURRENT LAND USE AND LAND OCCUPATIONS

At issue of this report, **Erf 313** remains mainly uninvaded and largely vacant with only a small portion of the land being used as an informal sports field. The position of the informal sports field is indicated in Figure 3-1, below:

Figure 3-1: Erf 313, Grabouw, Current Land Use

4 TOPOGRAPHY AND GROUND CONDITIONS

EASWC have assessed Topographical Surveys and Preliminary Geotechnical Studies in order to accurately assess the physical and technical properties of the anticipated **Erf 313** Development area.

4.1 TOPOGRAPHY

In **March 2024**, EASWC conducted an updated Contour/Topographical Survey and Aerial Imagery to facilitate upcoming detailed planning stages. All updated Topographical Surveys and Aerial Imagery have been submitted to the Client. Contour and topographical data have incorporated in the preliminary design assessments.

4.2 GROUND CONDITIONS AND GEOTECHNICAL

A <u>Preliminary Geotechnical Investigation</u> was finalised in **November 2024** and has been issued to the Client as *annexure A* of this report. The Preliminary Geotechnical Investigation is a desktop study, which aims to ensure that the potential geotechnical risks are identified, to assess the requirements for specialist geotechnical processes and investigations during the latter stages of the project.

In summary, the Preliminary Geotechnical Investigation provided the following extracted conclusions:

4.2.1 GEOLOGY AND SUBSOILS

"The site is primarily underlain by quartzitic sandstone (with minor shale layers) of the Nardouw Subgroup – Table Mountain Group. Sandstone bedrock is anticipated to occur at depths generally less than 1.5 metres below existing ground level (EGL) across most of study area with areas of rock outcrop present to the west. The sandstone bedrock weathers to form fine to coarse gritty sand with much of the overburden consisting of transported colluvium/hillwash."

The excavations from 0.0 to 1.5 metres depth are anticipated to be soft in terms of SANS 1200DA criteria.

The excavations from 1.5 - 2.5 metres depth are anticipated to be intermediate in terms of SANS 1200DA criteria.

Excavations deeper than 2.5 meters (or where bedrock is at or near the surface) are anticipated to be hard and will necessitate the use of pneumatic tools, and potentially blasting.

Further detail can be found in the Preliminary Geotechnical Investigation, which is attached as *Annexure A* of this report.

4.2.2 GROUND WATER TABLE

Shallow groundwater seepage is expected in the low-lying areas, drainage lines, and valley heads. A perched groundwater table may occur at shallow depths (typically less than 1.5 meters below the existing ground level, resting on shallow bedrock), both during and after rainfall periods, as well as during the peak rainfall season.

Further detail on the above can be found the Preliminary Geotechnical Investigation, which is attached as *Annexure A* of this report.

4.2.3 IN-SITU MATERIAL QUALITY

Based on the Preliminary Geotechnical Investigation, as attached in *Annexure A* of this report, the tested samples indicate the following material types:

- "The gravelly/sandy residual subsoils and sandstone bedrock are anticipated to classify between a G7 to G9 quality material in terms of TRH14, 1985 (generally good to fair subgrade materials)."
- "The sandy colluvium/hillwash (transported soils) subsoils on site are anticipated to not satisfy the criteria for a G9 quality material."

The majority of the in-situ material would be overall suitable for general fill operations with exceptions of areas where the sandy colluvium/hillwash is encountered.

4.2.4 DRAINAGE

Based on the Preliminary Geotechnical Investigation, as attached in Annexure A of this report:

"Shallow groundwater seepage can be anticipated along the low-lying areas and along drainage lines and valley head areas. A perched groundwater table can be anticipated at shallow depths (generally less than 1.5 metres below EGL, perched on the shallow bedrock) both during and after periods of rainfall and/or during the high rainfall season."

Due to the shallow perched water table subsoils are highly recommended as part of the stormwater design.

Further detail on the extract can be found in section 8 of the Preliminary Geotechnical Investigation.

4.2.5 SPECIAL PRECAUTIONS

To re-iterate the assertions of the Preliminary Geotechnical Investigation:

"It must be appreciated that the above recommendations have been based solely on the desktop study of the site. In order to provide more accurate recommendations for design purposes, the following additional geotechnical work is required for this site:

- I. Machine excavated test pits for the logging/profiling and sampling of soil and bedrock horizons. This will provide a visual assessment of the soil and bedrock strata, variation in depths to bedrock and an assessment of the excavation requirements, which is essential for budgeting and construction costs;
- II. CBR Dynamic Cone Penetrometer (DCP) tests to gauge the in-situ relative densities of the subsoils with depth; and
- III. Laboratory tests on soil and bedrock samples to allow for more accurate material classification and recommendations for use in earthworks, foundations, roads etc."

5 ENVIROMENTAL INVESTIGATION

In August 2022, a botanical survey was concluded by **Mark Berry Botanical Consulting** in order to determine the constraints in the development area. Subsequently, in September 2022, the Freshwater Verification study was concluded by **FEN Consulting** in order to identify all freshwater ecosystems that may potentially be impacted by the proposed housing development within the study area.

5.1 BOTANICAL SURVEY

The Botanical study identified several attributes as indicated in Figure 5-1, below. A key item is the Kogelberg Sandstone fynbos which is mainly present in the undevelopable portion of the erf. Kogelberg Sandstone fynbos is regarded as highly endangered and the conservation must remain a priority. This fynbos area was accommodated as a "no-go" zone in the proposed development layout.

Other attributes were also identified, but did not affect the proposed development. The drainage lines identified within figure 5-1 below, are discussed further in section 5.2. The report was issued to the client in a separate submission.

Figure 5-1: Botanical attributes.

5.2 FRESHWATER VERIFICATION STUDY

The freshwater verification study indicates two ephemeral drainage lines located on Erf 313. This drainage line has a 32m "No-Go" boundary zone, where no development is allowed. The "No-Go" zones and ephemeral drainage lines have been accommodated within the proposed development layout. The report was issued to the client in a separate submission.

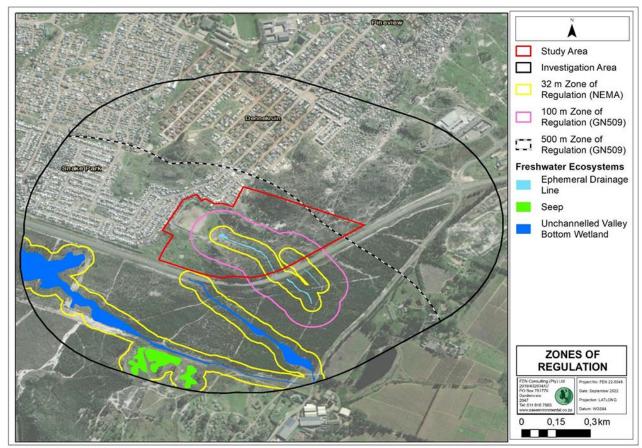


Figure 5-2: Overall delineated extent of the ephemeral drainage lines, seep and unchanneled valley bottom wetlands.

6 TOWN PLANNING LAYOUT

The Town Planning requirements for Erf 313 project are addressed by Plan4SA.

The layout has been aligned with the Theewaterskloof Municipality's plans and indicates the currently anticipated bounds of the development area, while considering all relevant Town Planning key details as related to the anticipated housing typologies and as far as possible anticipating the physical and environmental site constraints as covered.

The first Concept Town Planning Layout has been attached to this report as Annexure B.

6.1 CONCEPT TOWN PLANNING LAYOUT

The Concept Town Planning Layout for **Erf 313** was completed by **Plan4SA** in **October 2024**. The current plan sub-divides erf 313 into 2 parts, Portion A (6.4 hectares) will be used as the development area and the remainder of the erf (45.7 Hectares) remains undevelopable due to unsuitable conditions and "no-go" zones.

In total, the developable portion of erf 313 is anticipated to provide 254 housing opportunities as well as open spaces.

It is important to note that the Concept Town Planning Layout remains subject to the town Planning approval processes and therefore, may be due for various amendments based on review and feedback.

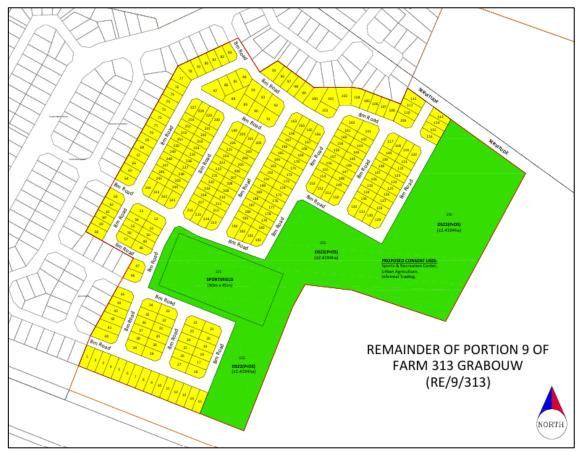


Figure 6-1: Erf 313 – Zoning plan

7 EXISTING SERVICES

Erf 313 is, in majority, a "green fields" development. Therefore, no formal existing internal services and infrastructure (that exists on the site) requires incorporation or consideration. All services and infrastructure will be installed as new.

8 PROPOSED INTERNAL CIVIL ENGINEERING SERVICES

The proposed Civil Engineering Services discussed in this section are based on coordinated outcomes of the internal **Erf 313** development footprint and include the following:

- Internal Roads Network.
- Stormwater Reticulation.
- Water Reticulation
- Sewerage Reticulation

8.1 INTERNAL ROADS NETWORK

The proposed Internal Roads Network is comprised of the following throughout the **Erf 313** development footprint:

- 1. 5m wide urban residential roads within 8m road reserves.
- 2. 4.5m wide urban residential roads within 6m road reserves.
- 3. Asphalt surfacing and related layer works throughout the development.
- 4. Mountable (drive-over) kerbing on either side of the roadway where access is anticipated.
- 5. Barrier kerbing in areas where vehicular access is not anticipated.
- 6. 1.2m sidewalk on both sides of the roadway in 8m road reserves.
- 7. 1.2m sidewalk on the one side of the roadway in 6m road reserves.

Beyond the facilitation of access and mobility, the internal road network will be integral to the management and conveyance of surface stormwater runoff and at appropriate positions, the road network will convey to the underground stormwater reticulation network.

The proposed Roads Layout is attached to this report as *Annexure C*.

8.2 STORWATER RETICULATION

The proposed Stormwater Reticulation network will be linked to the road network through a system of appropriately positioned catchpits (Grid and Kerb inlets) which will then convey the stormwater to the underground reticulation as follows:

1. Minimum 300mm diameter kerb inlet pipe connections to manholes.

- 2. Minimum 110mm diameter Sub-soil drainage pipe network for the management of risk imposed by ground water effects.
- 3. Minimum of 1m diameter Stormwater Manholes (depending on pipe size connection)
- 4. Minimum 375mm diameter manhole-to-manhole pipe connections.
- 5. Stormwater pond for the detention and regulation of stormwater outflow from the development footprint

The proposed Stormwater Reticulation Layout is attached to this report as Annexure D.

8.3 WATER RETICULATION

The Water Reticulation Network is comprised of the following throughout the internal **Erf 313** internal development footprint:

- 1. 110mm Diameter connections to the existing pipe network on the northern side of the development. [Indicated]
- 2. 110mm Diameter water pipes throughout the development footprint.
- 3. Minimum 25mm individual erf connection pipes.
- 4. A system of appropriately positioned shut-off valves and hydrant valves.

The proposed Water Reticulation Layout is attached to this report as Annexure E.

8.4 SEWERAGE RETICULATION

The Sewer Reticulation Network is comprised of the following throughout the internal **Erf 313** internal development footprint:

- 1. Minimum 160mm diameter sewer reticulation pipe.
- 2. Minimum 110mm diameter individual erf connection pipe.
- 3. 1m diameter Sewer manholes

The proposed Sewer Reticulation Layout is attached to this report as *Annexure F*.

8.5 ANTICIPATED BULK EARTHWORKS OVERVIEW

The average slope of the developable areas ranges between **0.2% to 7%** which falls within acceptable limits of developable land for the anticipated housing typologies. However, based on site inspections and the Preliminary Geotechnical Investigations, a series of rock outcrops and the prevalence of shallow underlying

bed rock is bound to complicate the implementation of all shaping earthworks and excavation work within the development footprint of **Erf 313**.

Full details can be found within the complete Preliminary Geotechnical Investigation Report as attached in this report as *Annexure A*.

With close reference to the Preliminary Geotechnical Investigation, it is reasonable to conclude that, in order to implement bulk earthworks, shaping and excavations within the **Erf 313** Development footprint, allowance should be made for:

Non-Restricted Excavations [As classified in SANS 1200D]:

- 1. Within soft material
- 2. Within intermediate material
- 3. Within Hard rock
- 4. Boulders

Restrict Excavations [As classified in SANS 1200D]:

- 1. Within soft material
- 2. Within intermediate material
- 3. Within hard rock: Which, consequently, also indicates that allowances must be made for approved methods of wedging, splitting or blasting as anticipated.

Further allowances will have to be made as part of the fill operations for the replacement of boulder volumes with suitable in-situ material or, in cases where the in-situ is unsuitable or depleted, imported commercial material.

The above considerations have had to be incorporated in detail during the concept design analysis in order to facilitate an informed decision-making process for the Client. The resultant cost estimates in the later sections of this report are therefore reflective of the above considerations.

9 BULK INFRASTRUCTURE UPGRADES

As part of developing **Erf 313** in accordance with the detail covered in earlier sections of this report, the proposed services (and overall, the **Erf 313** development) will need to be integrated into the existing surrounding Grabouw bulk infrastructure. The integration of **Erf 313** into the surrounding infrastructure is assessed for implementation through a series of Bulk Infrastructure Link Upgrades for the following services:

- Roads Network
- Stormwater Reticulation
- Sewer Reticulation
- Water Reticulation

9.1 ROADS NETWORK

Based on the current assessment, no bulk collector Roads infrastructure upgrades are required for the implementation of **Erf 313** development. It is, however, important to note that access to the **Erf 313** development is anticipated to be from the existing Makenzie Street and Makhanya Street.

9.2 BULK STORMWATER RETICULATION

Based on the current assessment and the available information, no bulk Stormwater infrastructure upgrades are anticipated for the implementation of **Erf 313**. However, it should be noted that portions from erf 313 naturally drains towards the N2 national road, therefore, engagements with the National Roads Authority (SANRAL) must be finalised before detailed designs of the stormwater reticulation.

9.3 BULK WATER RETICULATION

Based on current assessment and available information, no bulk Water infrastructure upgrades are required for the implementation of erf 313.

9.4 BULK SEWERAGE RETICULATION

Based on current assessment and available information, the availability of capacity for the reticulation of Sewerage for **Erf 313** depends on the implementation of Bulk Sewer Upgrades as identified by **GLS Consulting** in the Bulk Services Assessment Reports conducted in September 2019 and September 2022. The GLS reports have been included in this report as *Annexure H*.

With basis on the GLS reports, the Client has confirmed the Bulk Sewer Upgrade process is in progress and on schedule to be completed before the completion of Erf 313 development.

10 INTERNAL SERVICES COST ESTIMATE

The <u>estimated internal services construction cost</u> is provided in Table 10-1 below.

Table 10-1: Erf 313 Internal Services Cost Estimate

COST ESTIMATE: CIVIL ENGINEERING SERVICES FOR ERF 313				
Item DESCRIPTION			AMOUNT	
1	SCHEDULE A - PRELIMINARY AND GENERAL	R	2 812 950.00	
2	SCHEDULE B - SITE PREPARATION, BULK EARTHWORKS AND GENERAL	R	5 070 000.00	
3	SCHEDULE C - ROADWORKS	R	8 567 384.00	
4	SCHEDULE D - STORMWATER RETICULATION	R	4 229 382.00	
5	SCHEDULE E - SEWER RETICULATION	R	3 244 463.00	
6	SCHEDULE F - WATER RETICULATION	R	1 768 425.00	
7	SCHEDULE G - CABLE DUCTS	R	561 600.00	
	TOTAL ESTIMATED CIVIL ENGINEERING COST	R	26 254 204.00	
·	Add 15% VAT	R	3 938 130.60	
	ESTIMATED GRAND TOTAL	R	30 192 334.60	

11 INVESTIGATIONS AND STUDIES

This section of the report aims to present a summative overview of the studies/investigations that are recommended to facilitate the current progressions of the **Erf 313** development.

11.1 RECOMMENDED STUDIES AND INVESTIGATIONS

The studies/investigations listed below are recommended by EAS WC and should be considered for the progression of the current implementation of **Erf 313**:

1. Phase 1 Geotechnical Site Investigation:

For implementation upon preliminary design approval. This will allow specific focus on the anticipated problem areas and provide specific Engineering Geotechnical input linked to the current **Erf 313** concept, as included in this report.

12 CONCLUSION

Based on findings and presentations of this report, there is sufficient information to conclude that the proposed Civil Engineering services are feasible and possible to implement.

As confirmed by the TWK Municipality, the implementation of Bulk Services Upgrades required for the feasibility of **Erf 313** is on track for implementation and coordinated in line with the planning of the **Erf 313** internal services covered in this report. Through continuous coordination, the TWK Municipality has confirmed that the capacity within the Bulk Services will be created in time before or at the completion of the implementation of **Erf 313's** internal services.

The estimated costs are indicative of current rates (at issue of this report) and account for the reasonably anticipated conditions at **Erf 313**. In the case that the findings of this report are not aligned with the Client's expectations and planning, it is recommended that the findings be discussed, and alternatives explored where possible. Should the report, as submitted, be aligned with the Client's expectations and planning, it is recommended that approval be confirmed as soon as possible to allow for the progression of the implementation of **Erf 313** to the next stage of design development (Detailed Design).

13 ANNEXURES

ANNEXURE A – PRELIMINARY GEOTECHNICAL SITE INVESTIGATION

ANNEXURE B - CONCEPT TOWN PLANNING LAYOUT

ANNEXURE C - PROPOSED ROADS LAYOUT

ANNEXURE D - PROPOSED STORMWATER LAYOUT

ANNEXURE E – PROPOSED WATER LAYOUT

ANNEXURE F - PROPOSED SANITATION LAYOUT

ANNEXURE G - PROPOSED GENERAL SERVICES LAYOUT

ANNEXURE H – GLS BULK SEWER ASSESSMENT

ANNEXURE A: PRELIMINARY GEOTECHNICAL SITE INVESTIGATION

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR THE GREATER GRABOUW HOUSING PROJECT - ERF 313

Report No MD1483-2/1

NOVEMBER 2024

REPORT PREPARED BY MELIS & DU PLESSIS
ON INSTRUCTION FROM ENGINEERING ADVICE & SERVICES WESTERN CAPE (PTY) LTD

Engineering Advice & Services Western Cape (Pty) Ltd 8 St James St, Audas Estate SOMERSET WEST 7130

Tel No : (021) 879-4992 E-mail : <u>wadeb@easwc.co.za</u> MELIS & DU PLESSIS
Consulting Engineers (Pty) Ltd
106 Wentworth, Somerset Links Office Park
De Beers Ave, SOMERSET WEST
7130

Tel No: (021) 851-2010 E-mail: info@melisdup.com

TABLE OF CONTENTS

1.	INTRODUCTION		
2.	SCOPE OF WORKS		
3.	INFORMATION SUPPLIED		
4.	SITE DESCRIPTION		
5.	GEOLOGY AND SUBSOILS		
6.	GROUNDWATER OCCURRENCE		
7.	DISCUSSION		
	 7.1 Proposed Development 7.2 General Stability 7.3 Earthworks 7.4 Excavatability and Rippability 7.5 Material Classification and Usage for Subgrade Treatment for Roads, Parking Areas and Surface Beds 7.6 Suitability of Insitu Materials for Use as Trench Backfill 7.7 NHBRC Classification of the Study Area 7.8 Foundation Recommendations 		
8.	STORMWATER MANAGEMENT		
9.	RECOMMENDED ADDITIONAL WORK		
10.	CONCLUSION		
FIGUR	ES		

PRELIMINARY GEOTECHNICAL INVESTIGATION FOR THE GREATER GRABOUW HOUSING PROJECT – ERF 313

NOVEMBER 2024

1. INTRODUCTION

Melis & Du Plessis Consulting Engineers (Pty) Ltd (hereafter referred to as MDP) were appointed by Engineering Advice and Services to conduct the Preliminary Geotechnical Investigation for the Greater Grabouw Housing Project - Erf 313, Theewaterskloof Municipality.

2. SCOPE OF WORKS

The Preliminary Geotechnical Investigation is a desktop study following the requirements as set out in The National Housing Code in Chapter 3 of Part 3 as stipulated in the GFSH-2 manual – Generic Specification (September 2002).

The Preliminary Geotechnical Investigation aims to ensure that potential geotechnical risks are identified, to assess the requirements for specialist geotechnical processes and investigations during the latter stages of the project. As such, the expected subsoil conditions beneath the site are described and comment is made on slope stability, earthworks, foundations, excavatibility etc. in accordance with the requirements of the Theewaterskloof Local Municipality, South African National Standards (SANS 10400) and the National Home Builders Registration Council (NHBRC).

The recommendations provided in this report are preliminary, and subject to change based on a Detailed Geotechnical Investigation which needs to be carried out prior to design and development/construction.

3. INFORMATION SUPPLIED

The following information was provided by Engineering Advice and Services, for use as part of this study:

- SRK Consulting Report titled, "Gypsy Queen Erf 563 Grabouw Phase 1 Geotechnical Investigation (November 2022)", (Report No. 587360/1).
- Mark Berry Environmental Consultants Botanical Status Quo Report titled, "Portion 9 of Farm Oude Brug 313, Erf 4233 & Erf 8078, Grabouw (August 2022)".
- Google Earth files (kmz/kml) demarcating site boundaries and Global Positioning System (GPS) coordinates of the study area, and
- Photographs across the study area.

The 1:250 000 Geological Map titled "3319 Worcester" as published by the Geological Survey, was also used by MDP.

4. SITE DESCRIPTION

The study area is located in the Grabouw area, situated approximately 70km southeast of Cape Town CBD, within the Theewaterskloof Municipality, at latitude S34° 09' 53" and longitude E18° 59' 53". The locality of the site is indicated in **FIGURE 1**.

The site which spans across Erf 313, is approximately 19.2ha in extent and is accessed via the N2 Freeway in the south. The study area is mainly characterised by densely populated informal and some formal dwellings with a network of gravel access roads. Topographically, the study area generally slopes gently to moderately from Northwest to Southeast, with localised areas in which surface outcrop is exposed (particularly in the southern portion).

General views across the study area as shown in Plate 1 and Plate 2 below.

Plate 1 Plate 2

5. GEOLOGY AND SUBSOILS

According to published geological maps and literature, the site is primarily underlain by quartzitic sandstone (with minor shale layers) of the Nardouw Subgroup – Table Mountain Group. Sandstone bedrock is anticipated to occur at depths generally less than 1.5 metres below existing ground level (EGL) across most of study area with areas of rock outcrop present to the west. The sandstone bedrock weathers to form fine to coarse gritty sand with much of the overburden consisting of transported colluvium/hillwash.

The soil profile encountered is expected to comprise a light grey to greyish brown, fine grained, silty SAND (colluvium/hillwash transported soils) which overlies a yellowish brown/light brown to khaki brown fine to coarse grained gravelly SAND to sandy GRAVEL (residuum), in turn overlying weathered fine to coarse grained gritty sandstone bedrock.

The inferred boundaries of the lithological units are indicated in FIGURE 2.

6. GROUNDWATER OCCURRENCE

Shallow groundwater seepage can be anticipated along the low-lying areas and along drainage lines and valley head areas. A perched groundwater table can be anticipated at shallow depths (generally less

than 1.5 metres below EGL- perched on the shallow bedrock) both during and after periods of rainfall and/or during the high rainfall season.

7. DISCUSSION

7.1. Proposed Development

It is envisaged that single storey free standing housing units are proposed to be constructed across the study area, with each unit being approximately $40m^2$ in extent. Foundation loads for each unit are anticipated to be less than 50kPa.

7.2. General Stability

The study area is considered to be for the most part stable; however, good stormwater management is essential to ensure long term stability. Thus, it is recommended developmental practice, to maintain stability includes:

- Careful planning of the development in order to obviate large cuts and fills and ensure good site drainage.
- ii. Provision of stormwater control facilities such as retention structures, interceptors and similar such measures to reduce concentrated overland flows.
- iii. It is recommended that the development be focussed along gently to moderately sloping landform (generally less than 15° gradient). It is anticipated that higher housing densities can generally be achieved across most of the site.
- iv. It is recommended that the development is not planned along any steep/very steep slopes (generally greater than 15° gradient) and in/close proximity to natural drainage areas where groundwater seepage is shallow and/or surface water activity is imminent, particularly after periods of heavy rain.
- v. It is recommended that all necessary floodline studies (1 in 50 and 1 in 100 year), environmental and wetland delineation studies be carried out by a registered professional to determine the limits of development in the study area.

7.3. Earthworks

All earthworks should be carried out in a manner to promote stable development of the site. It is recommended that earthworks be carried out along the guidelines given in SANS 1200 (current version).

In terms of cuttings and natural slopes:

i. Cut slopes in soils should be formed to batters of 1 vertical to 1.5 horizontal (34 degrees) and to a height not greater than 1.5m where retaining walls are not provided or where slope stability assessments have been undertaken on the proposed slope. Cuts in weathered bedrock should not exceed gradients of 1 vertical to 1 horizontal (45 degrees).

ii. Inspection of cuts by a competent Engineering Geologist or Geotechnical Engineer may indicate that the angle of cut batter slopes need to be varied locally to ensure stability of the site.

In terms of embankment slopes and platforms:

- i. Where natural ground slopes are steeper than 1 vertical to 6 horizontal (6 degrees), the fill must be benched into the slope. Benches should be 0.5m deep and 2.0m wide.
- ii. Placement of fill should be undertaken in layers not exceeding 200mm thick when placed loose and compacted using suitable compaction plant to achieve minimum 93% Modified AASHTO maximum dry density.
- iii. Terraces should be graded to direct water away from the fill edges, and small earth bunds should be constructed along the crests of fills, to prevent overtopping and erosion of fill embankment slopes. These bunds should be a minimum 450mm wide and 300mm high.
- iv. Quality assurance, namely density control of any placed fill material should be undertaken at regular intervals during fill construction.
- v. Boulders larger than 200mm diameter or ¹/₃ of the layer thickness when loose should be removed from the fill material as these could complicate the compaction works, and also cause piping within fills. Furthermore, large boulders in fills could cause later problems during construction of foundations.
- vi. Engineered fill slopes should be formed to batters of 1 vertical to 1.5 horizontal provided that the edge of fills are over constructed and thereafter trimmed back to the required position.

7.4. Excavatability and Rippability

It is anticipated that the subsoils from 0.0 to 1.5 metres depth will be easily excavatable. These materials classify as <u>soft</u> in terms of SANS 1200DA criteria which can easily be removed by hand tools or a tractor loader backhoe (TLB) of flywheel power approximately 0.10kW per millimetre of tined bucket width.

It is anticipated that excavations from 1.5 - 2.5 metres in the soil to upper weathered rock layers will classify as <u>intermediate</u>, which can be efficiently ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220kW. In addition, consideration can also be given to use of a tracked excavator of flywheel power exceeding 0.10kW per millimetre of tined bucket width.

Excavations below 2.5 metres (and where bedrock is present at or near surface level) classify as <u>hard</u> and will require the use of pneumatic tools and possibly blasting.

7.5. Material Classification and Usage for Subgrade Treatment for Roads, Parking Areas and Surface Beds

The following comments for the study area have relevance in this regard:

i. The gravelly/sandy residual subsoils and sandstone bedrock are anticipated to classify between a G7 to G9 quality material in terms of TRH14, 1985 (generally good to fair subgrade

materials). Where gravelly/sandy soils of G9 quality (or better) are encountered, the materials should be ripped to the depths specified by the Engineer and re-compacted to 95% Modified AASHTO maximum dry density. A design CBR of 8 - 10 can be used in this instance.

ii. The sandy colluvium/hillwash (transported soils) subsoils on site are anticipated to not satisfy the criteria for a G9 quality material.

The above information is inferred and is subject to a Detailed Geotechnical Investigation which will include Laboratory testing for final confirmation.

7.6. Suitability of Insitu Materials for Use as Trench Backfill

Materials classifying as Selected Granular Materials i.e. "Bedding Sands" and Select Backfill in terms of SANS 1200LB definitions are anticipated to not be present on site. Accordingly, allowances for importing suitable sands for support and covering of pipes in service trenches should be made.

However, the materials on site can be used as general trench backfill above pipes.

The above information is inferred and is subject to a Detailed Geotechnical Investigation which will include Laboratory testing and pipe details for final confirmation.

7.7. NHBRC Classification of the Study Area

According to the guidelines provided by the NHBRC, it is anticipated that the site classifies as **C/C1-R** – Study area underlain by compressible and potentially collapsible sandy/gravelly soils with areas of shallow bedrock occurring generally less than 1.5 metre below EGL.

The inferred NHBRC classification boundaries are indicated in FIGURE 2.

The specifications following the NHBRC guidelines, together with the foundation recommendations, are listed below in **Tables 1 and 2**.

Table 1: Residential site class designations (from NHBRC)

TYPICAL FOUNDING MATERIAL	CHARACTER OF FOUNDING MATERIAL	EXPECTED RANGE OF TOTAL SOIL MOVEMENTS (mm)	ASSUMED DIFFERENTIAL MOVEMENT (% OF TOTAL)	SITE CLASS
Silty sands, sands, sandy and gravelly soils COMPRESSIBLE AND POTENTIALLY COLLAPSIBLE SOILS		<5 5.0 – 10	75% 75%	C C1
Rock (excluding mudrocks which may exhibit swelling to some depth)		NEGLIGIBLE	-	R

Table 2: Foundation design, building procedures and precautionary measures for single storey residential structures founded on collapsible soil horizons (from NHBRC Part 1)

SITE CLASS	ESTIMATED TOTAL SETTLEMENT (mm)	CONSTRUCTION TYPE	FOUNDATION DESIGN AND BUILDING PROCEDURES (Expected damage limited to Category 1)
С	< 5	Normal	Normal construction (strip footing or slab on the ground foundations) Good site drainage
C1	5 – 10	Modified Normal	 Reinforced strip footings. Articulation joints at all internal / external doors and openings. Light reinforcement in masonry. Site drainage and plumbing / service precautions.
		Compaction of in situ soils below individual footings	 Remove in situ material below foundation to a depth of 1.5m times the foundation width or to a competent horizon and replace with material compacted to 93 % MOD ASSHTO density at -1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip foundation and light reinforcement in masonry.
		Deep strip foundations	Normal construction with drainage requirements Founding on a competent horizon below the problem horizon
		Soil Raft	 Remove all necessary parts of expansive horizon to 1,0 m beyond the perimeter of the building and replace with inert backfill compacted to 93% MOD AASHTO density at –1% to +2% of optimum moisture content. Normal construction with lightly reinforced strip footings and light reinforcement in masonry if residual movements are <7,5 mm, or construction type appropriate to residual movements. Site drainage and plumbing / service precautions.

7.8. Foundation Recommendations

Considering the topography of the site and the soils encountered, several founding systems may be adopted. The type of foundation system selected will depend on the structure type, the soil type and the thickness of the soil cover over a competent founding layer. Various foundation options are discussed below.

7.8.1. Raft Foundation

In adopting the raft founding solution on this project the following recommendations have relevance.

- i. The stiffened raft foundation should comprise a grillage of reinforced concrete beams cast integrally with the floor slab. The stiffness of the raft should be sufficient to reduce the differential movements in the supporting soil to a level than can be tolerated by the structure. In practice, it is often uneconomical to provide a raft stiff enough to allow the use of solid brickwork without movement joints, and articulated brickwork is therefore, recommended.
- ii. Additionally, the employment of pads keyed into competent bedrock would further enable the raft design to be optimised to counteract against differential settlements. This is particularly important where the structure straddles the cut/fill line on any given platform.
- iii. In the construction of the structures an allowable ground bearing pressure of 75kPa can be adopted for founding purposes for structures located at a depth of 0.5m and placed on at least medium dense residual gravelly/sandy soils. A maximum allowable ground bearing pressure of 150kPa can be considered for structures located in weathered bedrock; structures located on fill need to be supported off pads founded onto the intact bedrock.

7.8.2. Reinforced Concrete (R.C.) Strip Footings

Alternatively reinforced concrete (R.C.) strip footings and ground beams on mass concrete pads can be considered. The economic use of a founding solution comprising strip footing and R.C. ground beam on pad bases is also likely to prove feasible over the site where approved founding materials (rock) occur within 1.5 metres of finished platform level.

An allowable ground bearing pressure of 75kPa can be adopted for founding purposes for structures located at a depth of 0.5m medium dense residual gravelly/sandy soils. A maximum allowable ground bearing pressure of 150kPa can be considered for structures located in weathered bedrock

Furthermore, by virtue of its relative simplicity, this founding solution lends itself to adoption by emerging subcontractors under the guidance of a main housing contractor as part of a labour-based contract.

The site will be classified during the Detailed Geotechnical Investigation in accordance with the guidelines provided by the National Home Builders Registration Council (NHBRC).

8. STORMWATER MANAGEMENT

The use of soakpits to dispose of stormwater runoff is not recommended due to the likely occurrence of a perched water table over the majority portion of the study area (note, the presence of shallow depth to bedrock is a clear indication of a perched water table during rainy periods).

It is important that the design of the stormwater management system allow for the drainage of accumulated surface water. It is recommended that all surface water be suitably directed by use of surface drains and controlled release to low points (drainage lines or streams).

Both during and after construction, the site should be well graded to permit water to readily drain away and to prevent ponding of water anywhere on the surface of the ground. All terraces and earthworks in general should be sloped to a gradient to prevent ponding and ingress of water into the subsurface soils.

9. RECOMMENDED ADDITIONAL WORK

It must be appreciated that the above recommendations have been based solely on the desktop study of the site. In order to provide more accurate recommendations for design purposes, the following additional geotechnical work is required for this site:

- i. Machine excavated test pits for the logging/profiling and sampling of soil and bedrock horizons. This will provide a visual assessment of the soil and bedrock strata, variation in depths to bedrock and an assessment of the excavation requirements, which is essential for budgeting and construction costs:
- ii. CBR Dynamic Cone Penetrometer (DCP) tests to gauge the in-situ relative densities of the subsoils with depth; and
- iii. Laboratory tests on soil and bedrock samples to allow for more accurate material classification and recommendations for use in earthworks, foundations, roads etc.

10. CONCLUSION

This report details the results of a Preliminary Geotechnical Investigation for the "Greater Grabouw Housing Development - Rooidakke (on Erf 313), Theewaterskloof Municipality".

The soil profile encountered is expected to comprise a light grey to greyish brown, fine grained, silty SAND (colluvium/hillwash transported soils) which overlies a yellowish brown/light brown to khaki brown fine to coarse grained gravelly SAND to sandy GRAVEL (residuum), in turn overlying weathered fine to coarse grained gritty sandstone bedrock.

The most important factor in the stable development of the site is the control and removal of both surface and groundwater from the site.

Shallow groundwater seepage can be anticipated along the low-lying areas and along drainage lines and valley head areas. A perched groundwater table can be anticipated at shallow depths (generally less than 1.5 metres below EGL, perched on the shallow bedrock) both during and after periods of rainfall and/or during the high rainfall season.

A detailed geotechnical investigation will be required to determine the limits of slope stability across the site. Development is not recommended in seepage areas where shallow groundwater seepage and/or surface water activity is imminent, particularly after periods of heavy rain.

The gravelly/sandy subsoils and sandstone bedrock are anticipated to classify between a G7 to G9 quality material in terms of TRH14, 1985 (generally good to fair subgrade materials). The sandy colluvium/hillwash (transported soils) subsoils on site are anticipated to not satisfy the criteria for a G9 quality material.

Materials classifying as Selected Granular Materials i.e. "Bedding Sands" and Select Backfill in terms of SANS 1200LB definitions are anticipated to not be present on site. However, the materials on site can be used as general trench backfill above pipes.

According to the guidelines provided by the NHBRC, it is anticipated that the site classifies as **C/C1-R** – Study area underlain by compressible and potentially collapsible sandy/gravelly soils with areas of shallow

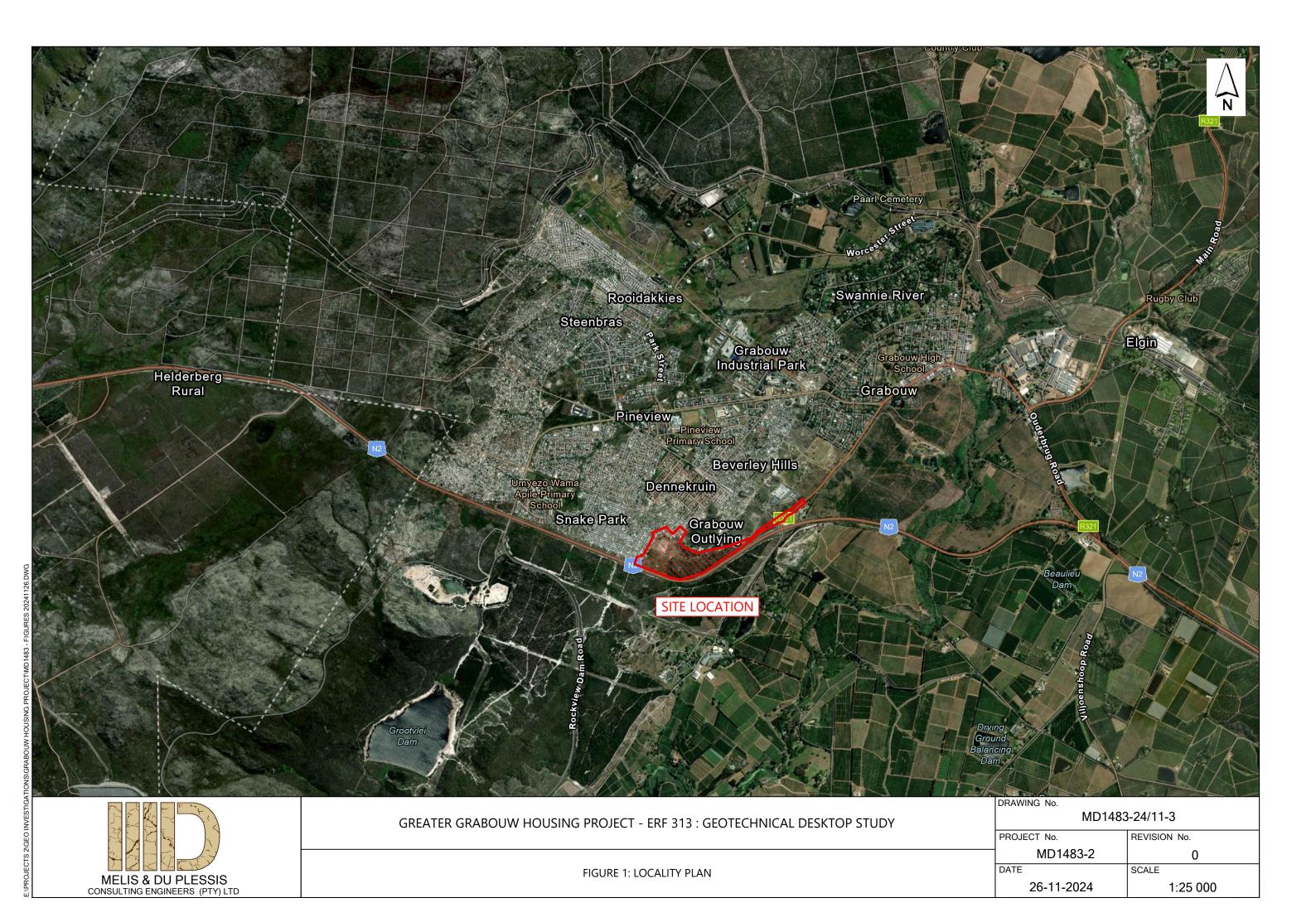
bedrock occurring generally less than 1.5 metre below EGL.

The use of soakpits to dispose of stormwater runoff is not recommended due to the likely occurrence of a perched water table over the majority portion of the study area (note, the presence of shallow depth to bedrock is a clear indication of a perched water table during rainy periods).

A raft foundation can be selected across most of the area/s to support the proposed structures. Cognisance of the requirement of pad supports to the raft beneath the fill portion of the layout with pads keyed into bedrock should be made.

The economic use of comprising strip footing and R.C. ground beam on pad bases is also likely to prove feasible over the site where approved founding materials occur within 1.5m of finished platform levels.

Taking all the factors into account it is considered that the site is suitable for the proposed development, subject to the findings of a detailed geotechnical investigation.


This report has been based solely on a desktop study. To provide more accurate recommendations, it is recommended that a Detailed Phase 1 Geotechnical Investigation be carried out across the study area (comprising inspection pits, CBR Dynamic Cone Penetrometer tests, laboratory sampling etc.) prior to engineering design and construction. As such, MDP would be able to assist in this regard.

Y. Hansa

for MELIS & DU PLESSIS CONSULTING ENGINEERS (Pty) Ltd

FIGURE 1

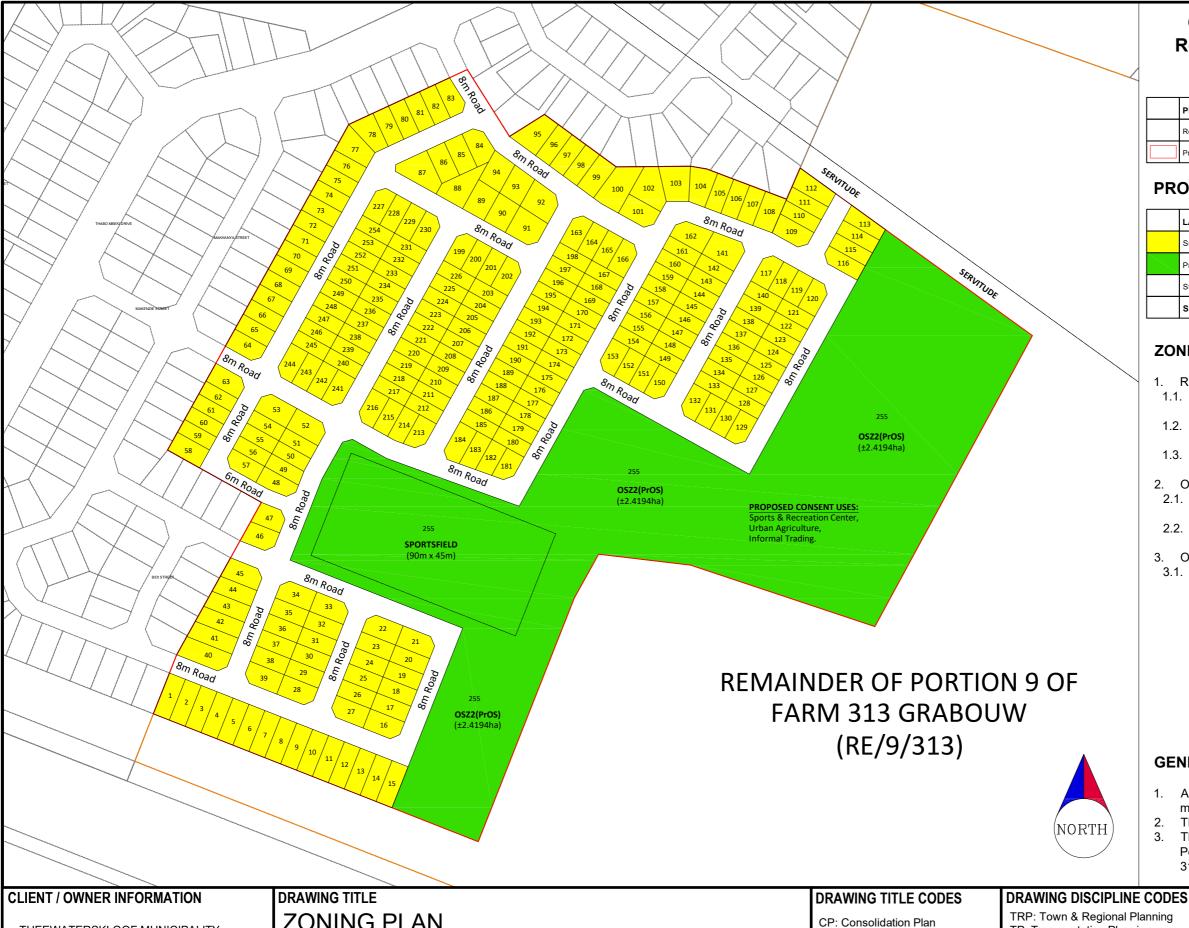

Locality Plan

FIGURE 2 Geology & NHBRC Classification

ANNEXURE B: CONCEPT TOWN PLANNING LAYOUT

GRABOUW HOUSING PROJECT Remainder of Portion 9 of the Farm Oude Brug 313, Grabouw

PROPERTY	TITLE DEED	SG DIAGRAM	AREA
Remainder of Portion 9 of the Farm 313	T98690/1999 T10304/2005	SG180/1999	45.6977 ha
Proposed Portion A (a portion of RE/9/313)			6.3655 ha

PROPOSED SUBDIVISION & ZONING:

LAND USE	ZONING	ERF NRS	NR ERVEN
Subsidy Housing	Single Residential Zone 2 (SRZ2)	1 - 254	254
Private Open Space	Open Space Zone 2 (OSZ2)	255	1
Streets / Public Roads	Transport Zone 2 (TUZ2)	Remainder	1
SUB-TOTAL			256

ZONING & LAND USE NOTES:

- 1. RESIDENTIAL LAND USES:
- The proposed layout makes provision for SUBSIDY Housing on Single Residential Zone 2 (SRZ2) erven.
- Proposed Consent Uses on SRZ2 erven: House Shop rights on all corner erven.
- Erven can accommodate Freestanding dwelling units, Semi-detached dwelling units and 2-Unit Duplexes.
- 2. OPEN SPACE LAND USES
- 2.1. Proposed Erf 255: to be zoned as Open Space Zone 2 (OSZ2)(Private Open Space) and used as a park.
- Consent uses proposed on Erf 255: Sport & Recreation Centre, Urban Agriculture and Informal Trading.
- 3. OTHER NON-RESIDENTIAL LAND USES
- 3.1. All internal roads to be zoned Transport Zone 2 (TUZ) and used as Public Roads / Streets.

GENERAL NOTES:

- 1. All measurements, areas and distances are indicative and must be confirmed by a Professional Land Surveyor. 1
- The property is owned by the Theewaterskloof Municipality.
- There are no known servitudes on the proposed subdivided Portion A (a Portion of the Remainder of Portion 9 of Farm

THEEWATERSKLOOF MUNICIPALITY

Contact: Mr Landile Litholi

Position: Head: Project Implementation Tel: 028-214-3300 / 028-214-3427

Cell: 076-183-7752 Email: landileli@twk.gov.za Web: www.twk.gov.za

ZONING PLAN

PLAN NUMBER **SCALE** SHEET SIZE SHEET NUMBER 4 NTS **A3** 1 of 1

PROJECT NAME

GREATER GRABOUW HOUSING: RE/9/313

DF: Development Framework

LP: Locality Plan

LUP: Land Use Plan

SDP: Site Development Plan SLP: Site Layout Plan

SUB: Subdivision Plan ZP: Zoning Plan

TRP: Town & Regional Planning

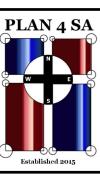
TP: Transportation Planning

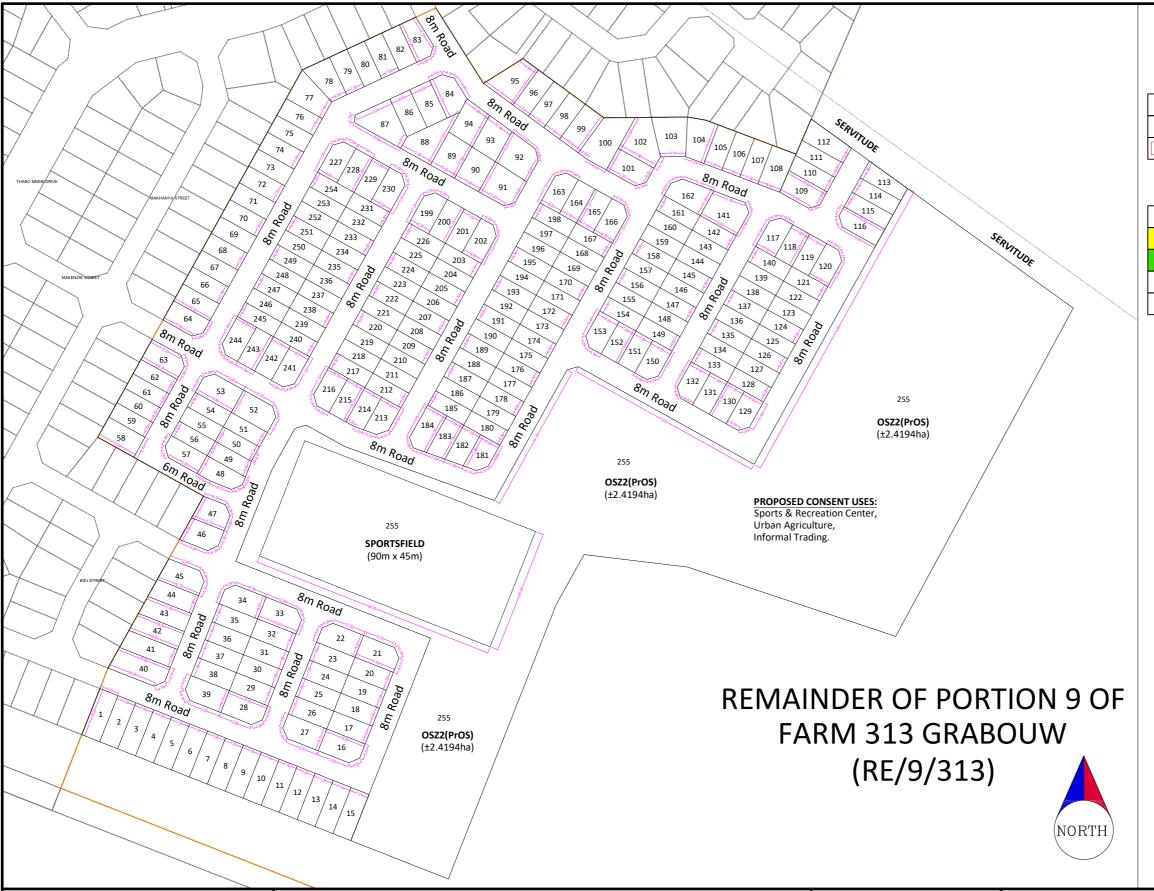
DRAWING STATUS CODES

D: Draft F: Final

DRAWING NUMBER

23P006 - RE/9/313 - TRP - ZP -20241017 - D01


PROFESSIONAL PLANNERS & PROJECT MANAGERS


MARTIN JONKER Tel: 084-410-6132 Fax: 086-524-8738

Email: martinj@plan4sa.co.za

Web: www.plan4sa.co.za

COPYRIGHT RESERVED

GRABOUW HOUSING PROJECT Remainder of Portion 9 of the Farm Oude Brug 313, Grabouw

PROPERTY	TITLE DEED	SG DIAGRAM	AREA
Remainder of Portion 9 of the Farm 313	T98690/1999 T10304/2005	SG180/1999	45.6977 ha
Proposed Portion A (a portion of RE/9/313)			6.3655 ha

PROPOSED SUBDIVISION & ZONING:

LAND USE	ZONING	NR ERVEN	AREA (m²)	AREA (ha)	AREA (%)
Subsidy Housing	SRZ2	254	26,638	2.6638	41.85%
Private Open Space	OSZ2	1	24,194	2.4194	38.01%
Public Streets / Roads	TUZ2	1	12,822	1.2822	20.14%
TOTAL		256	63,655	6.3655	100%

SITE DEVELOPMENT PLAN NOTES:

- 1. All measurements, areas and distances are indicative and must be confirmed by a Professional Land Surveyor.
- 2. ROADS
- Except for 1 x 6m wide road, all other internal roads have an 8m road reserve.
- Access to the site is obtained from 4 access points on its western boundary which links up with the existing neighbourhood to the west of the site.
- 3. RESIDENTIAL BLOCKS / ERVEN
- The proposed layout makes provision for 254 x residential erven to be used for Subsidy Housing purposes. Proposed zoning is Single Residential Zone 2 (SRZ2).
 - Proposed consent uses on residential erven: House Shop rights for all corner erven in the development.
- Block widths are 30m except for blocks on the boundaries of the site.
- 4. DENSITY
- Gross density: ±40 du/ha
- Nett density: ±95 du/ha
- 5. NON-RESIDENTIAL ERVEN
- 1 x Private Open Space (OSZ2) zoned site which will accommodate a soccerfield. Proposed consent uses on this site includes Sports & Recreation Center, Urban Agriculture and Informal
- Existing community uses (Place of Instruction, Place of Worship, etc.) in the neighbouring areas will be used.

CLIENT / OWNER INFORMATION

THEEWATERSKLOOF MUNICIPALITY

Contact: Mr Landile Litholi Position: Head: Project Implementation

Tel: 028-214-3300 / 028-214-3427 Cell: 076-183-7752 Email: landileli@twk.gov.za Web: www.twk.gov.za

DRAWING TITLE

DRAFT SITE DEVELOPMENT PLAN

PLAN NUMBER SCALE SHEET SIZE SHEET NUMBER 3 **A3** NTS 1 of 1

PROJECT NAME

GREATER GRABOUW HOUSING: RE/9/313

DRAWING TITLE CODES

CP: Consolidation Plan

DF: Development Framework

LP: Locality Plan

LUP: Land Use Plan

SDP: Site Development Plan SLP: Site Layout Plan

SUB: Subdivision Plan ZP: Zoning Plan

DRAWING NUMBER

D: Draft

F: Final

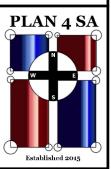
23P006 - RE/9/313 - TRP - SDP -20241017 - D01

DRAWING DISCIPLINE CODES

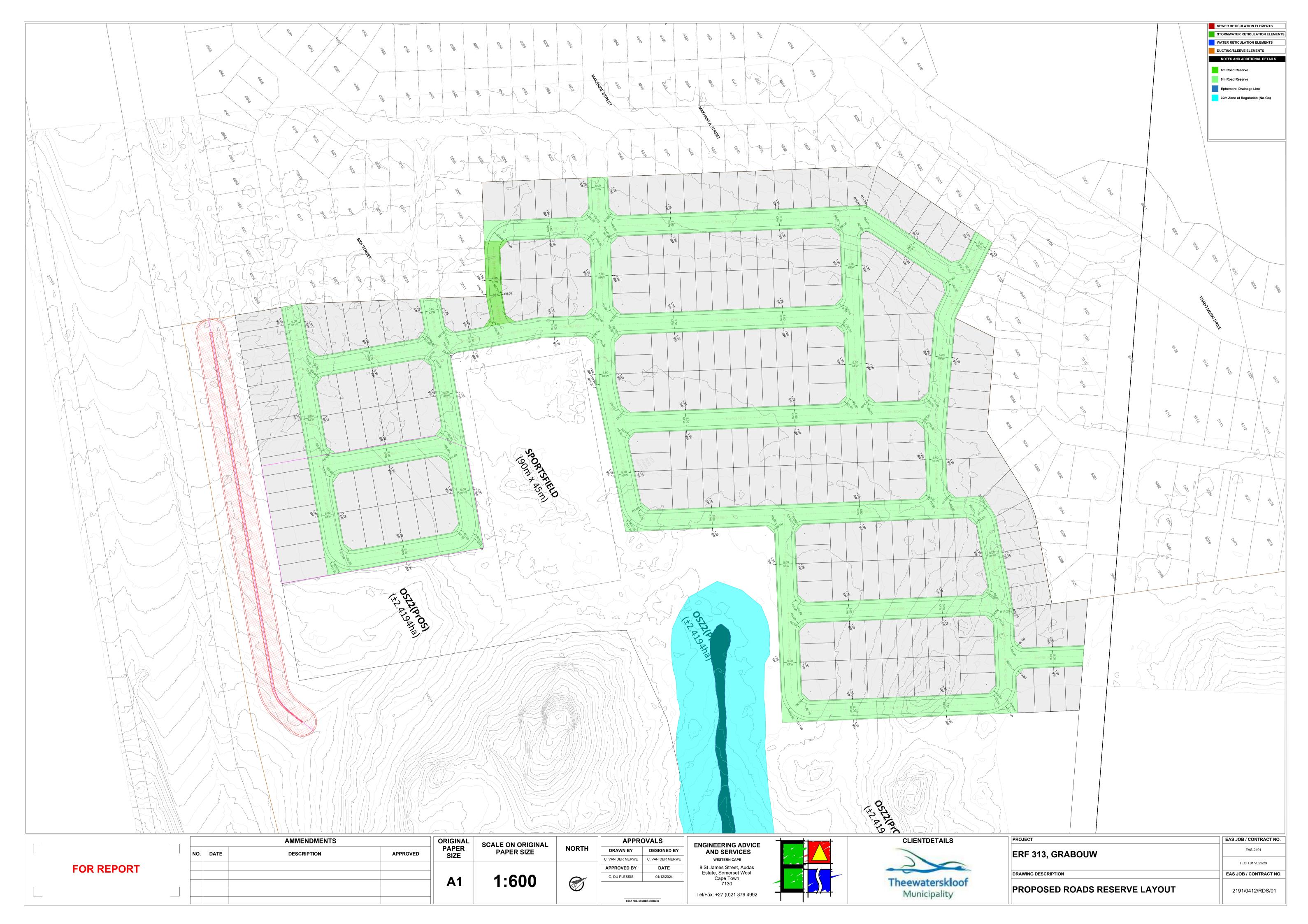
TRP: Town & Regional Planning

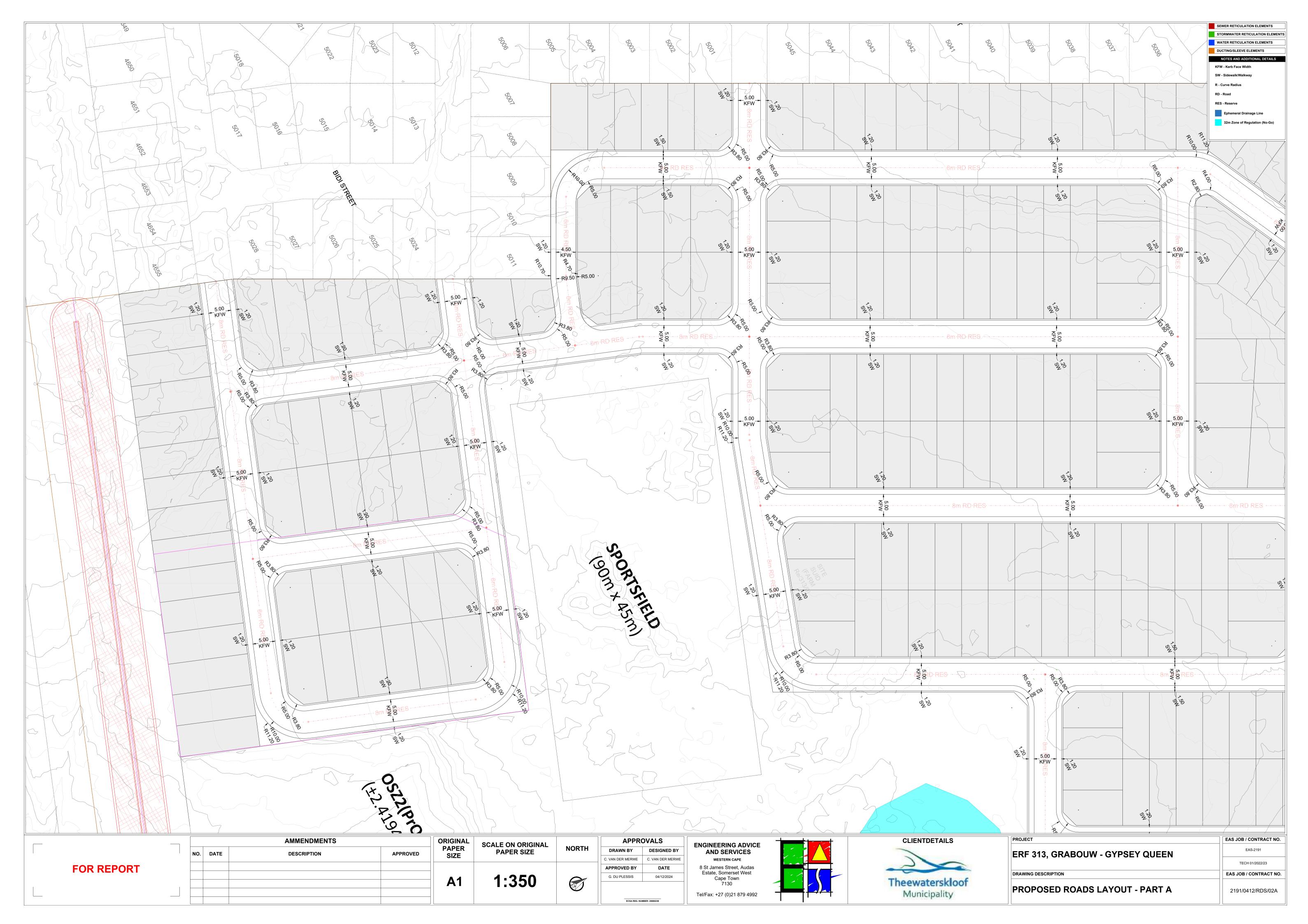
TP: Transportation Planning

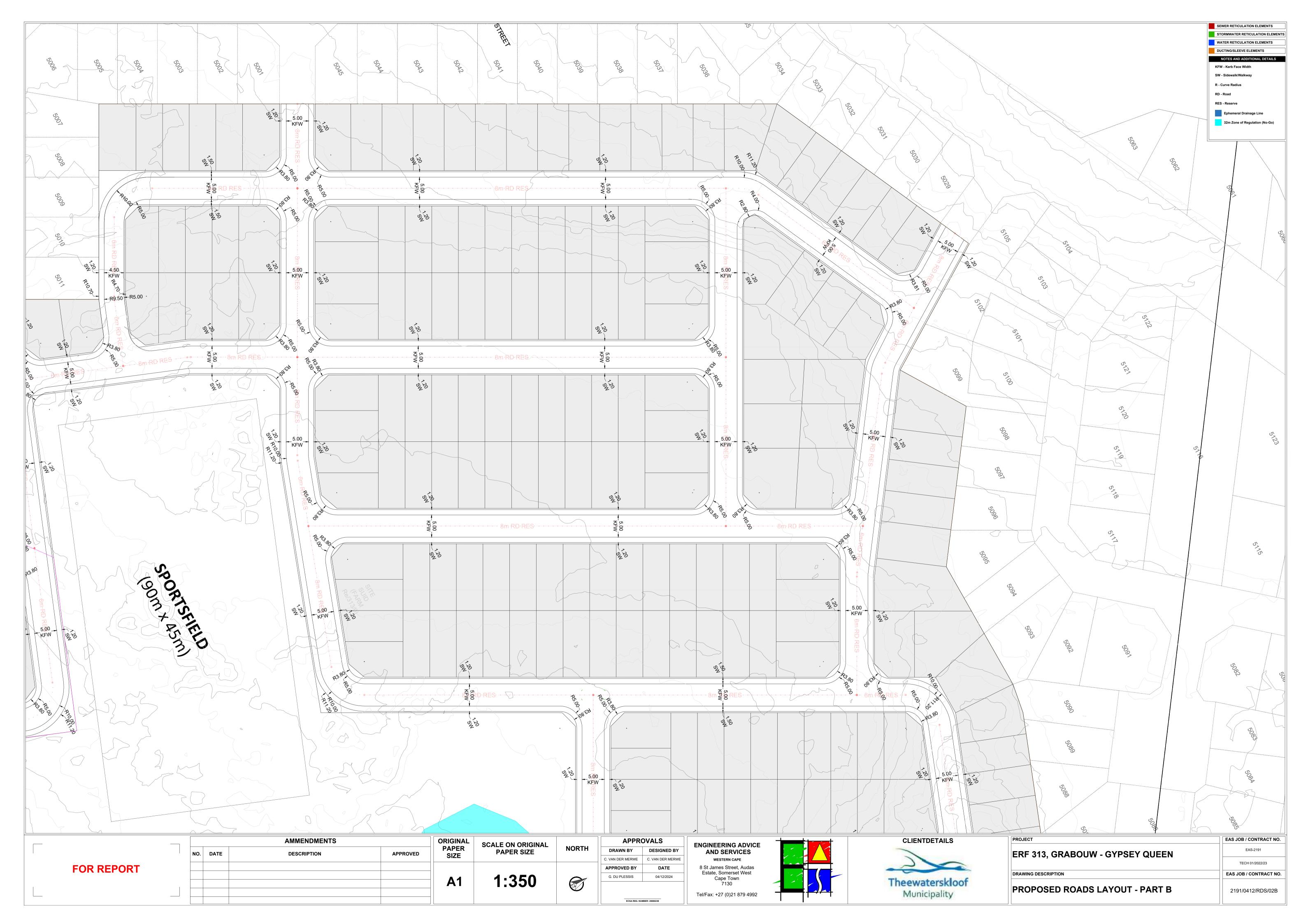
DRAWING STATUS CODES

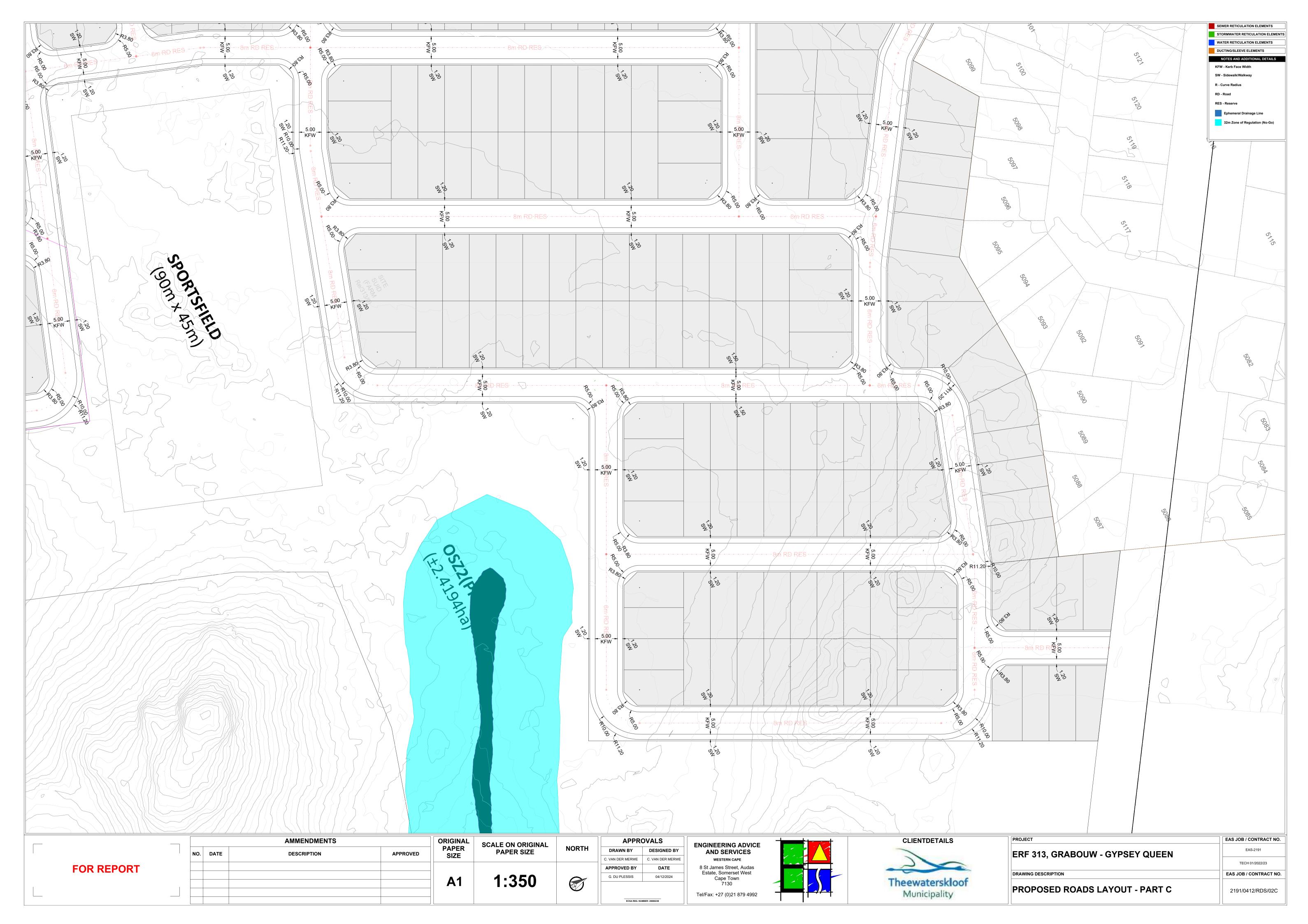

PROFESSIONAL PLANNERS & PROJECT MANAGERS

MARTIN JONKER Tel: 084-410-6132 Fax: 086-524-8738

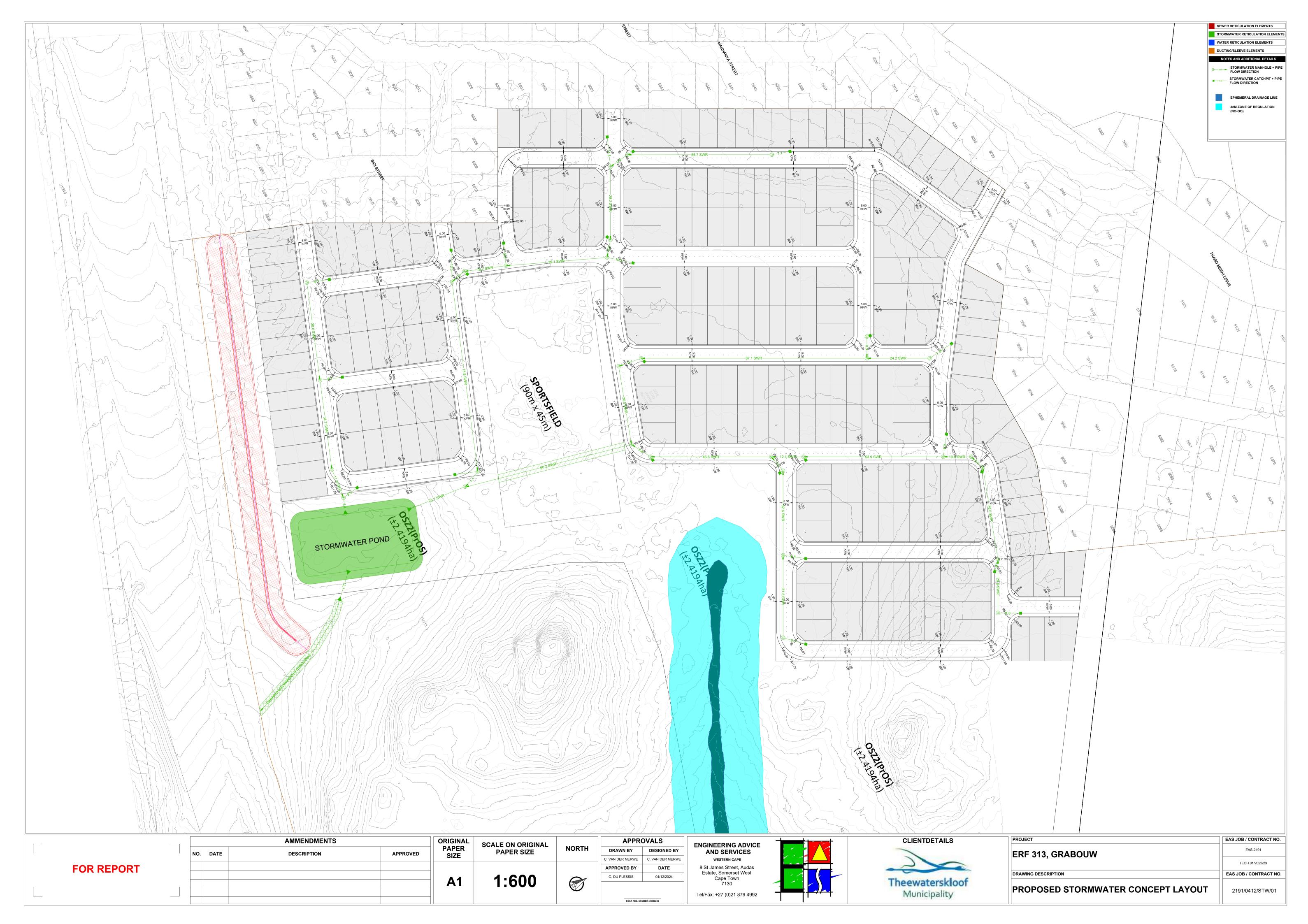

Email: martinj@plan4sa.co.za

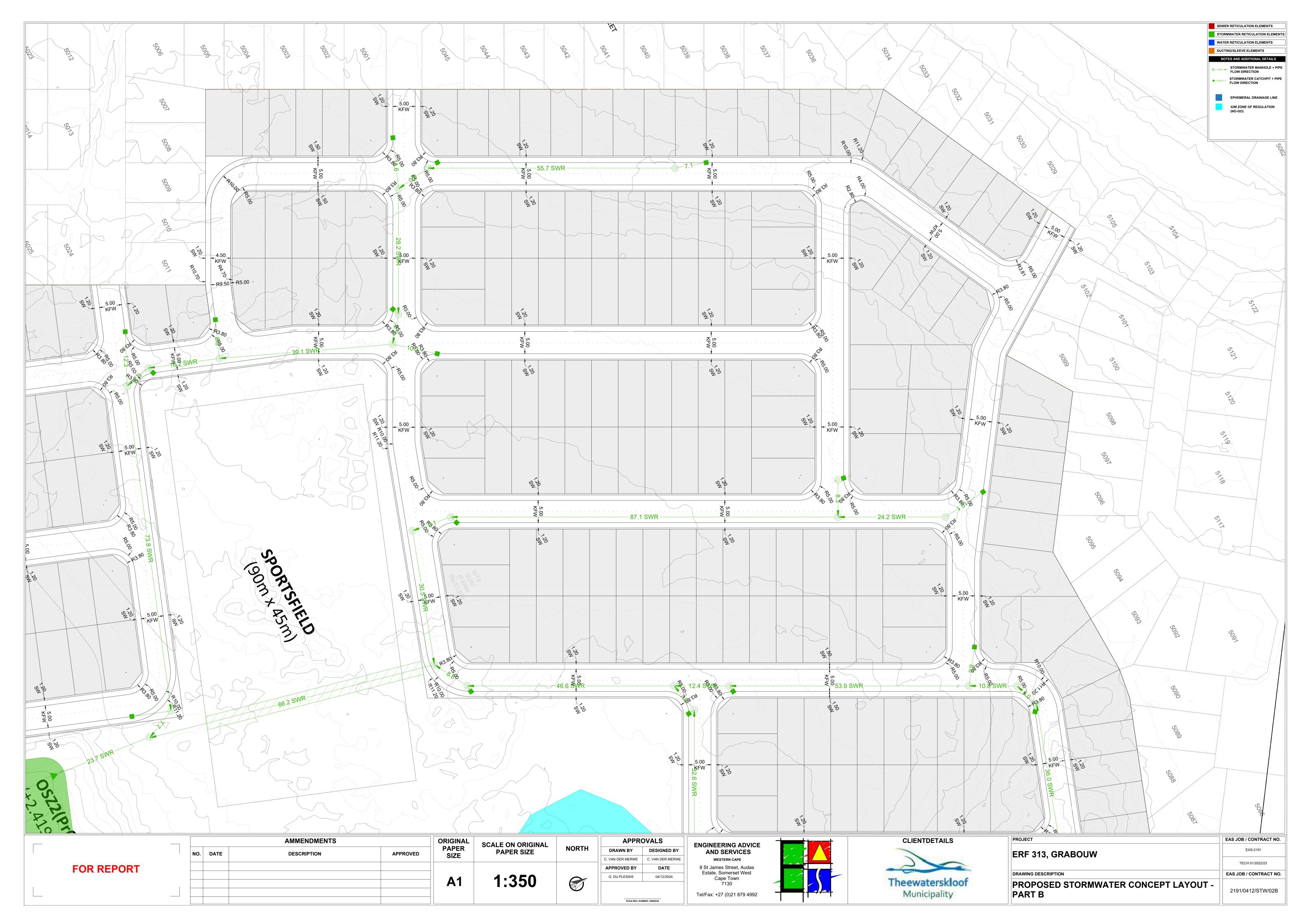

Web: www.plan4sa.co.za

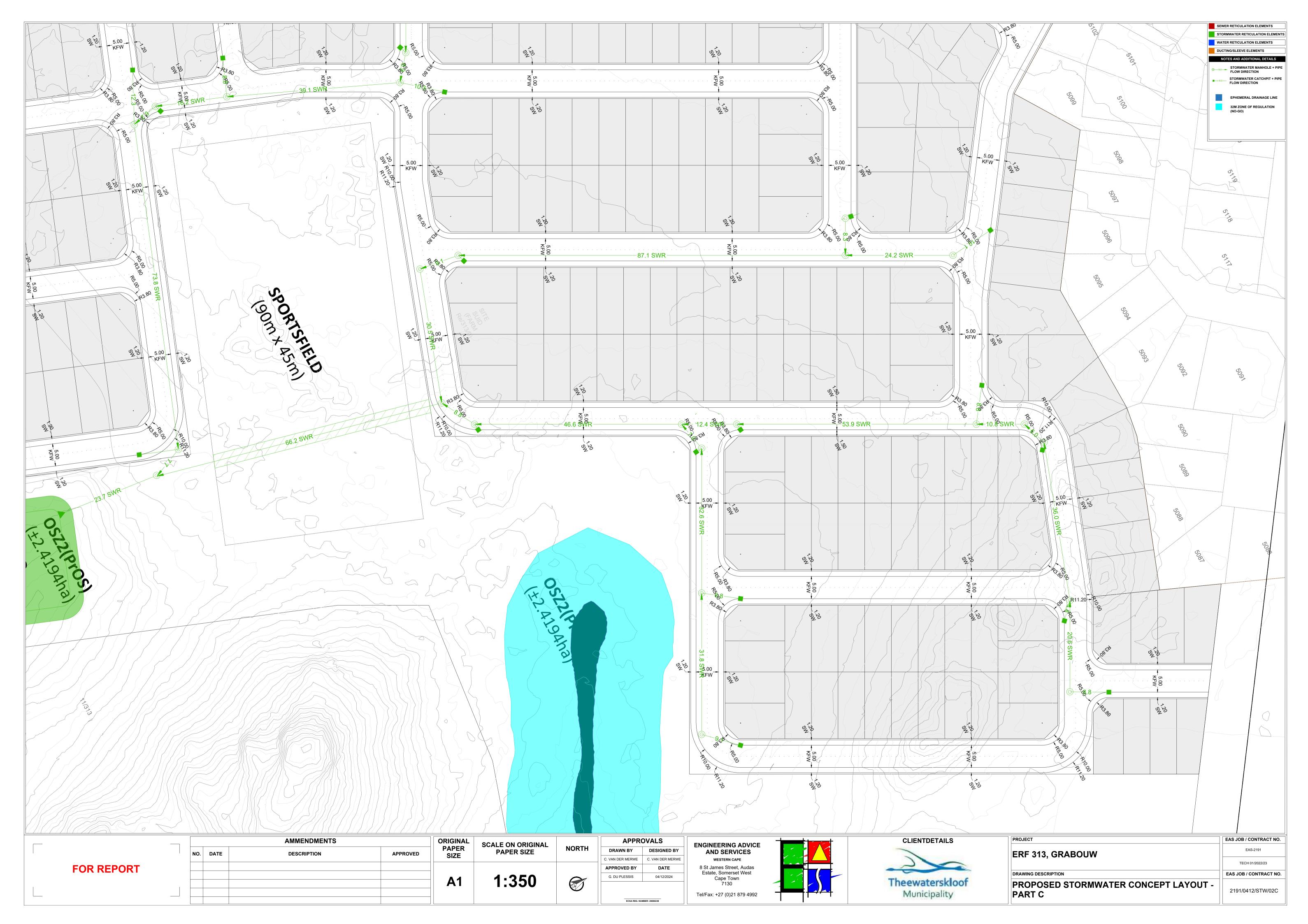

COPYRIGHT RESERVED



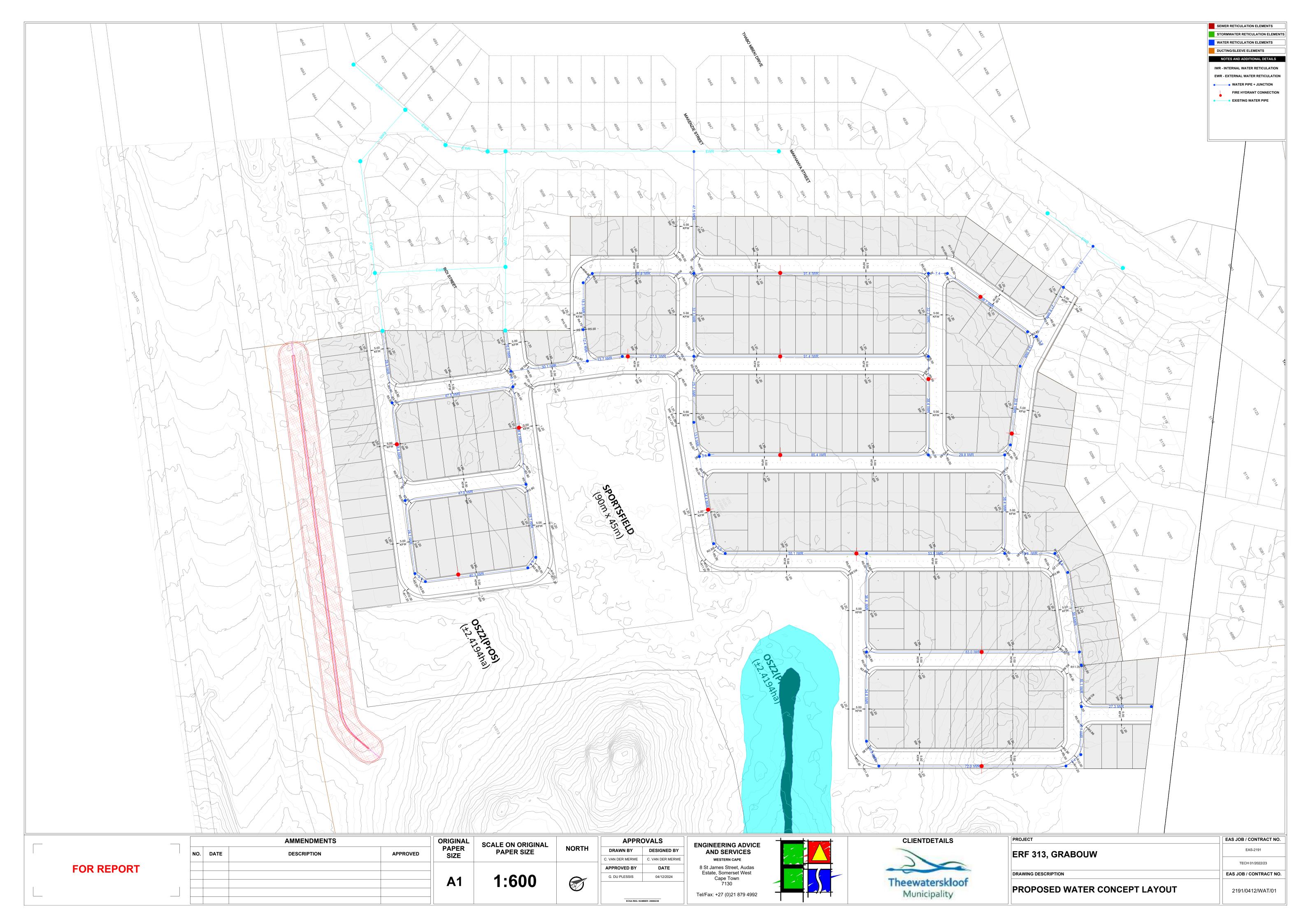
ANNEXURE C: PROPOSED ROADS LAYOUT

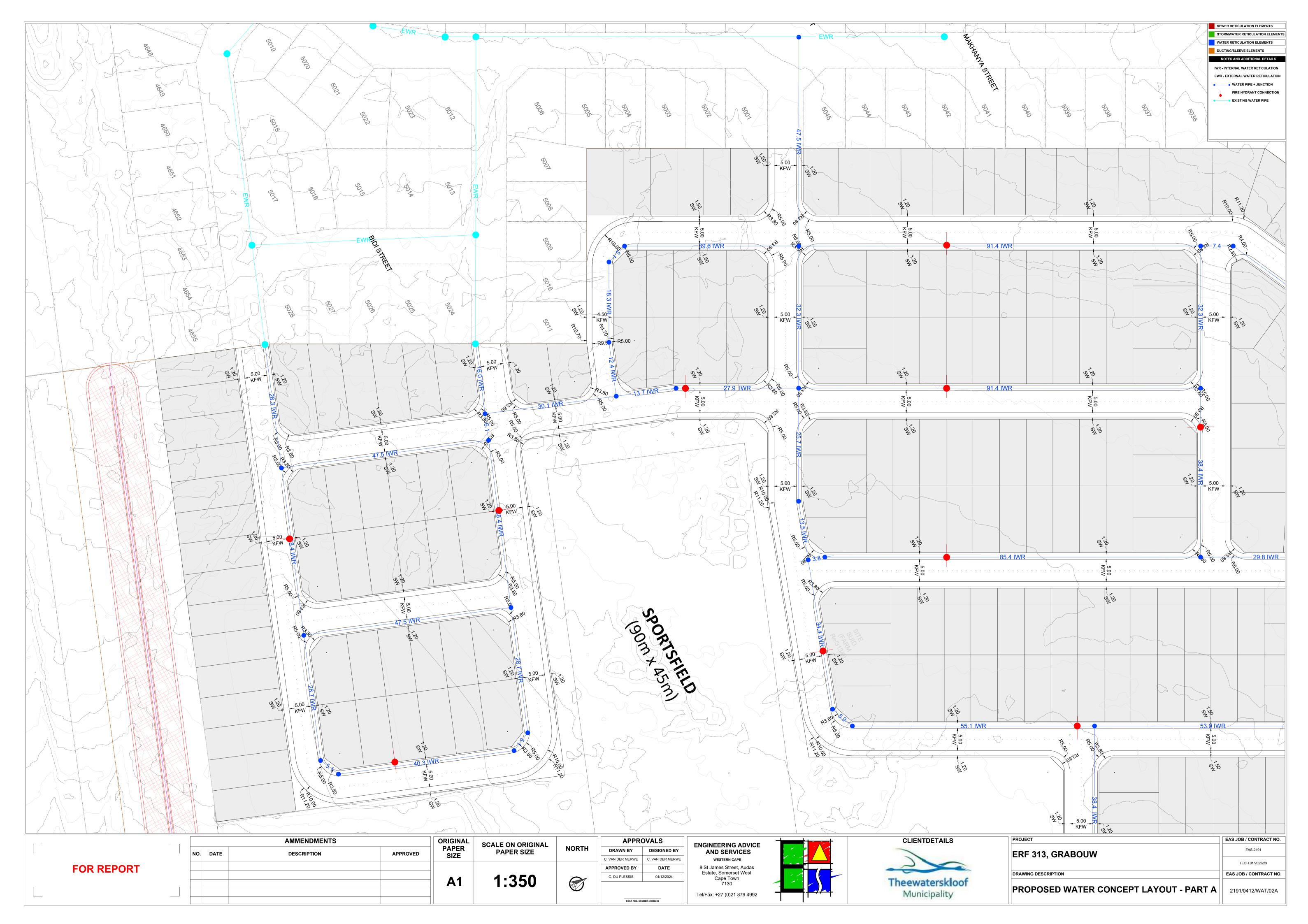


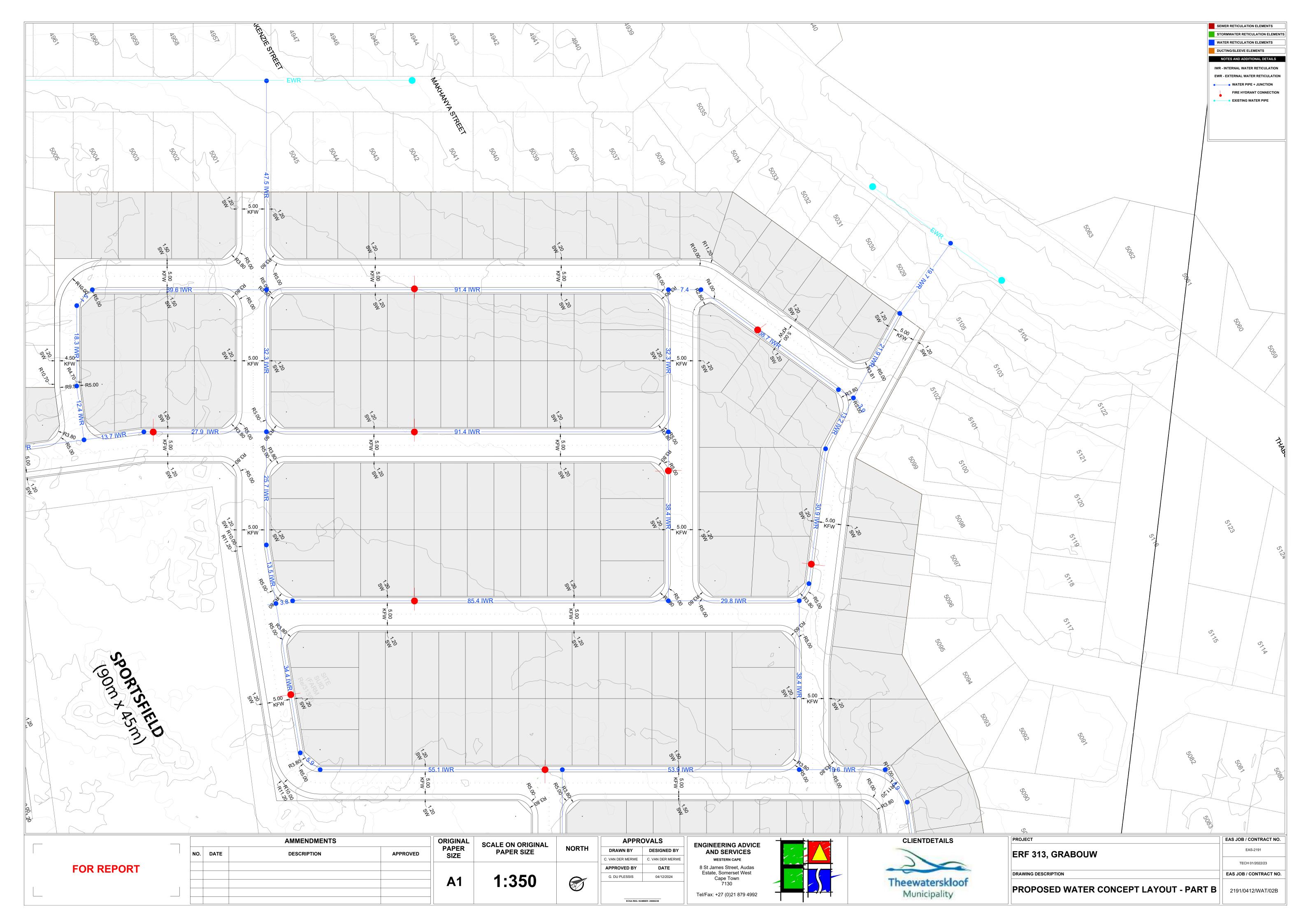


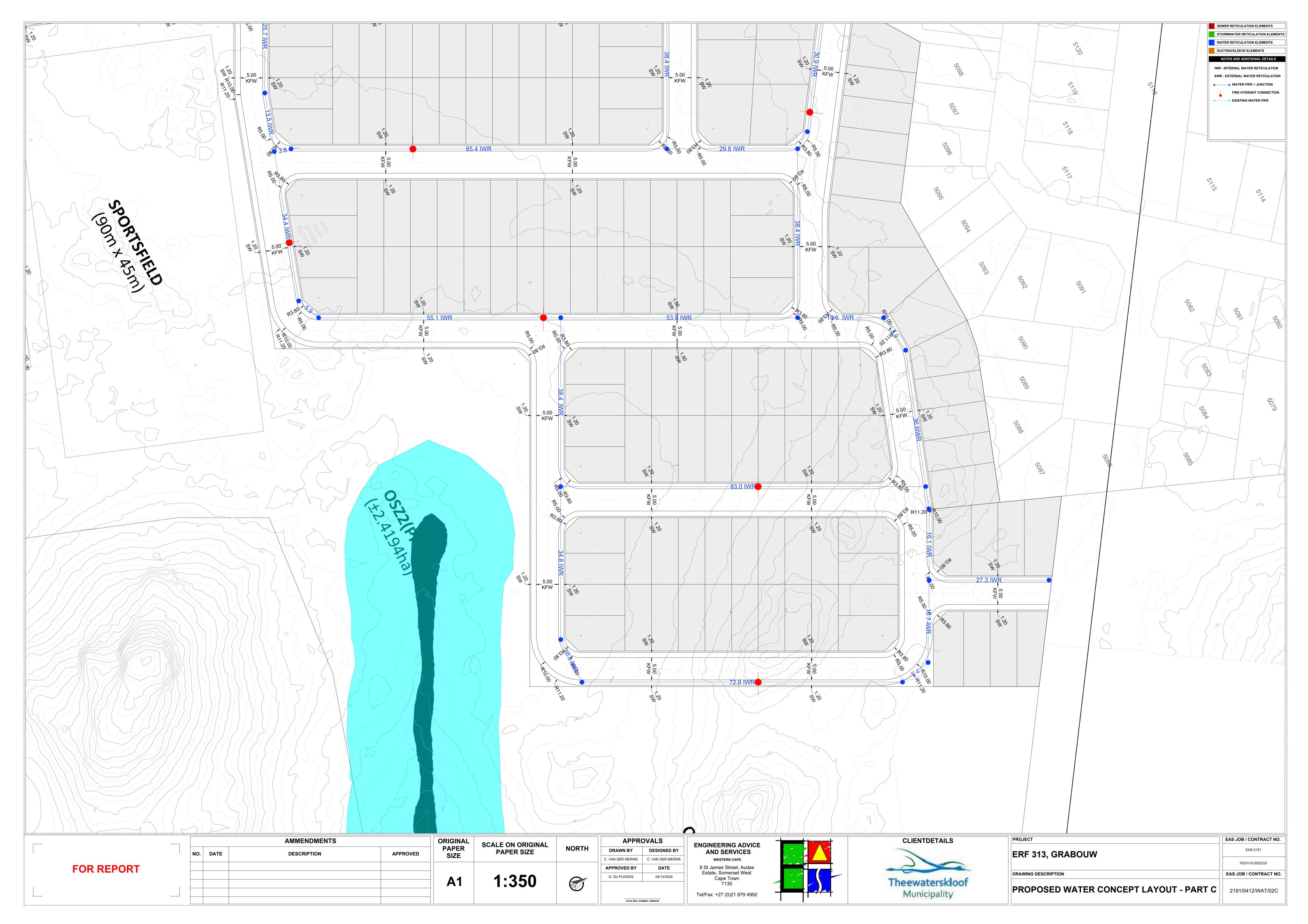


ANNEXURE D: PROPOSED STORMWATER LAYOUT

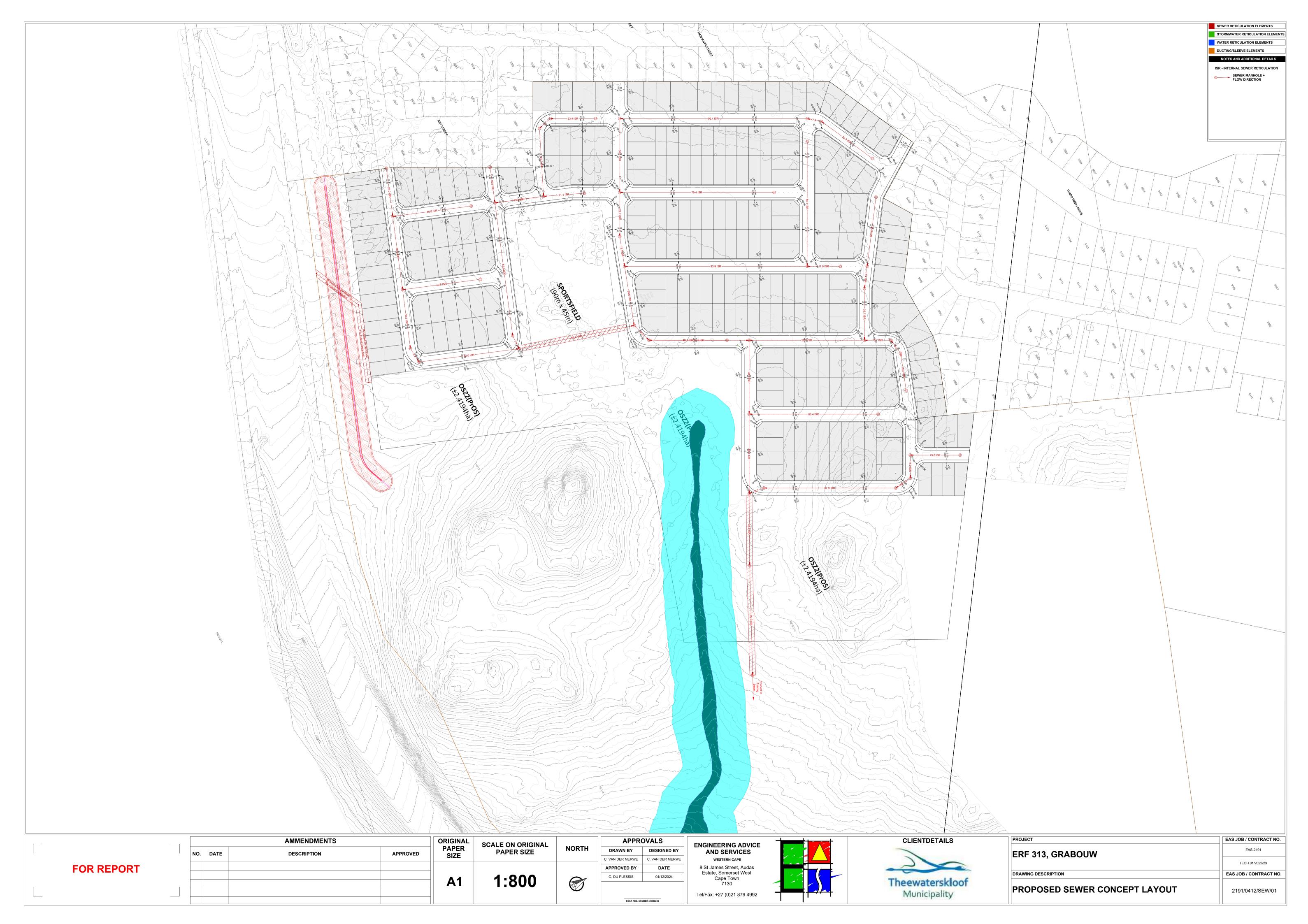


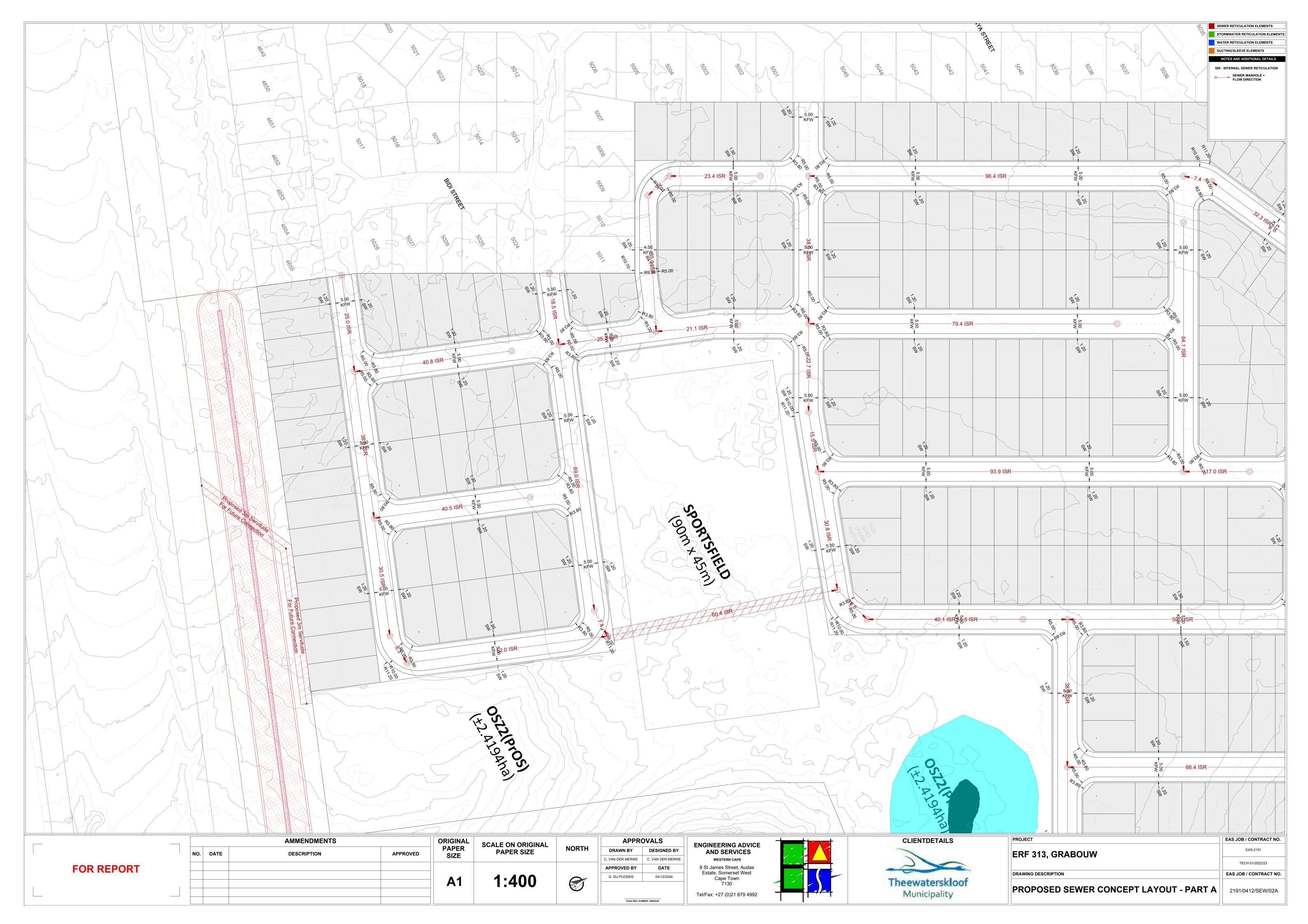


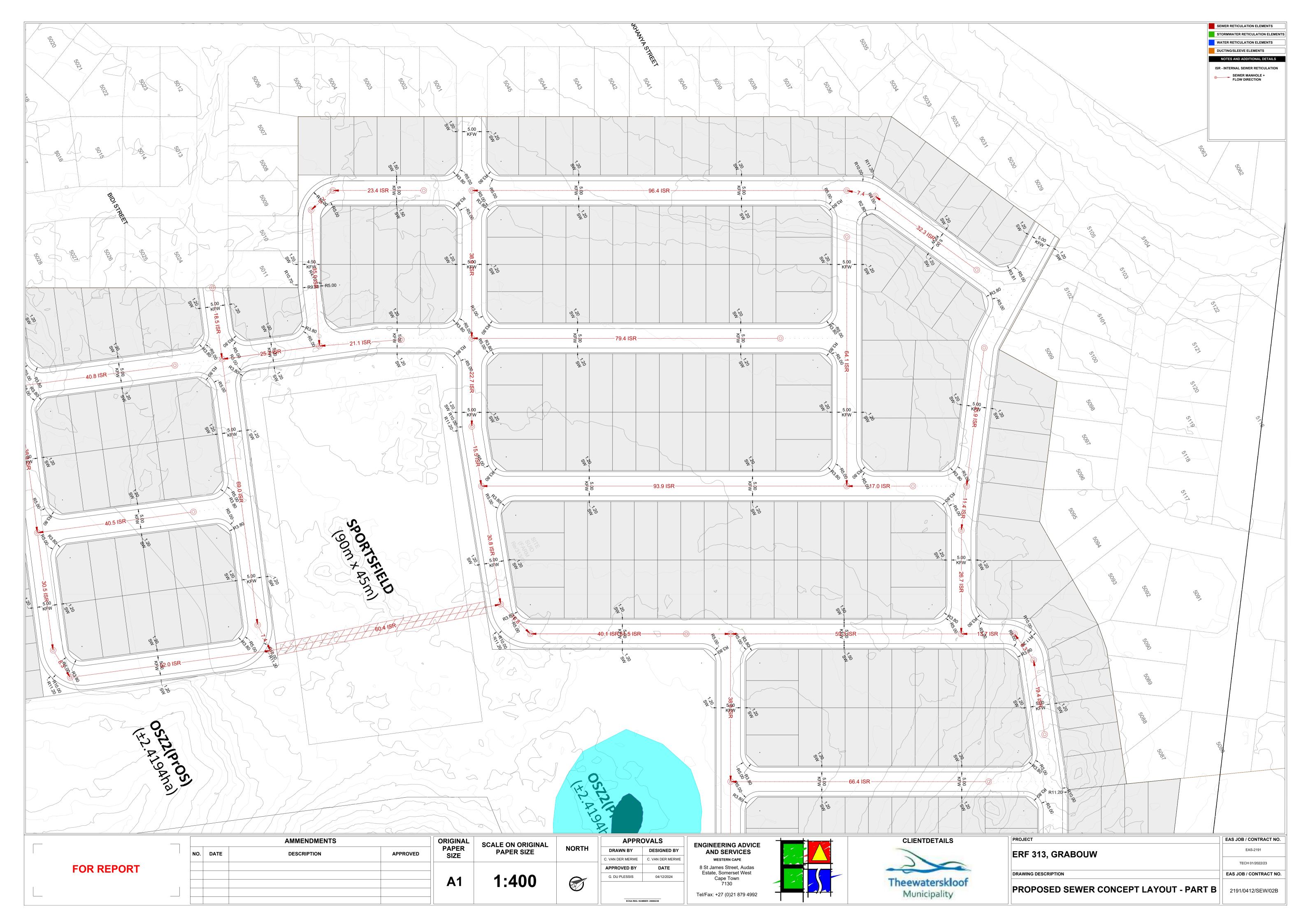


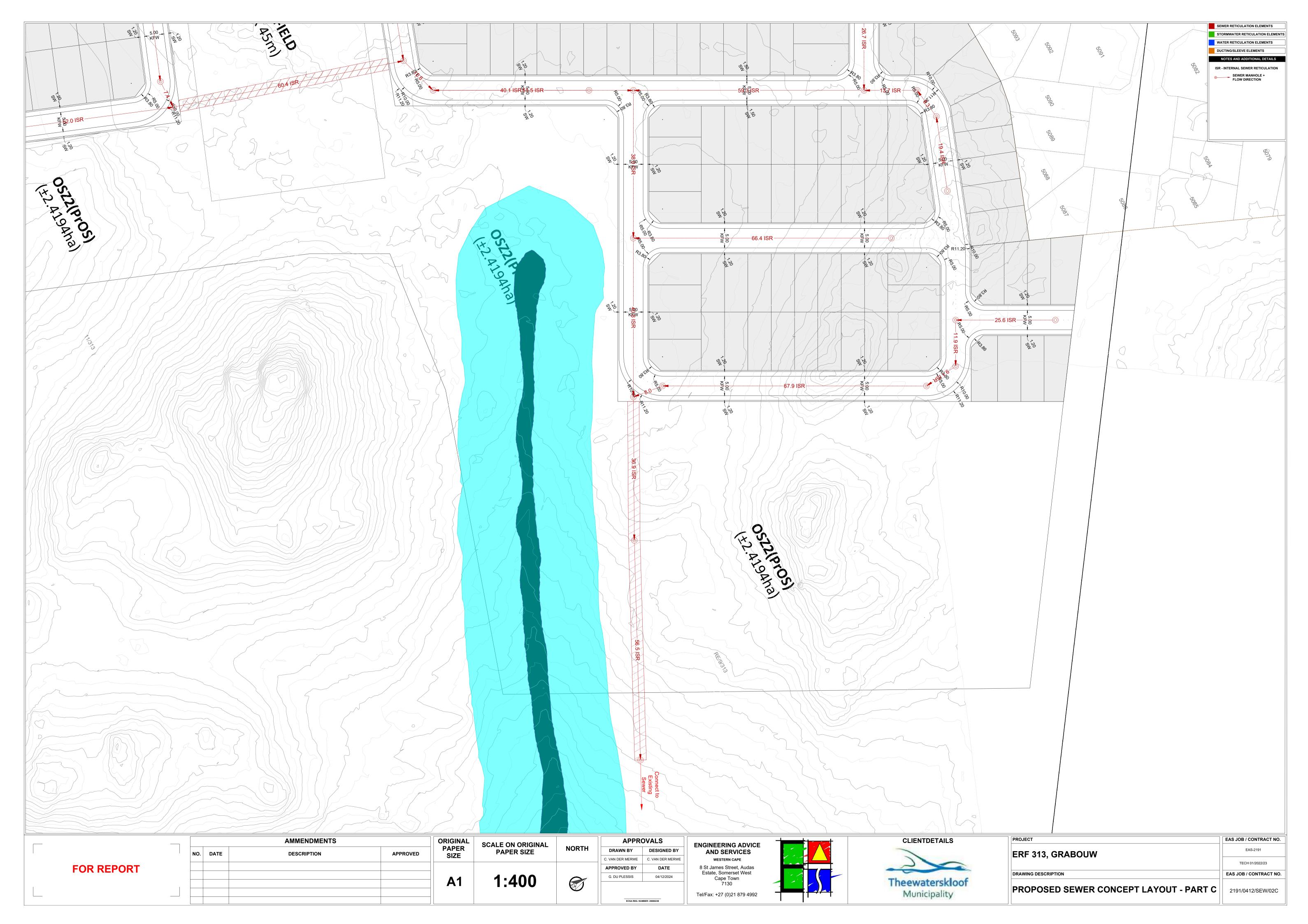


ANNEXURE E: PROPOSED WATER LAYOUT

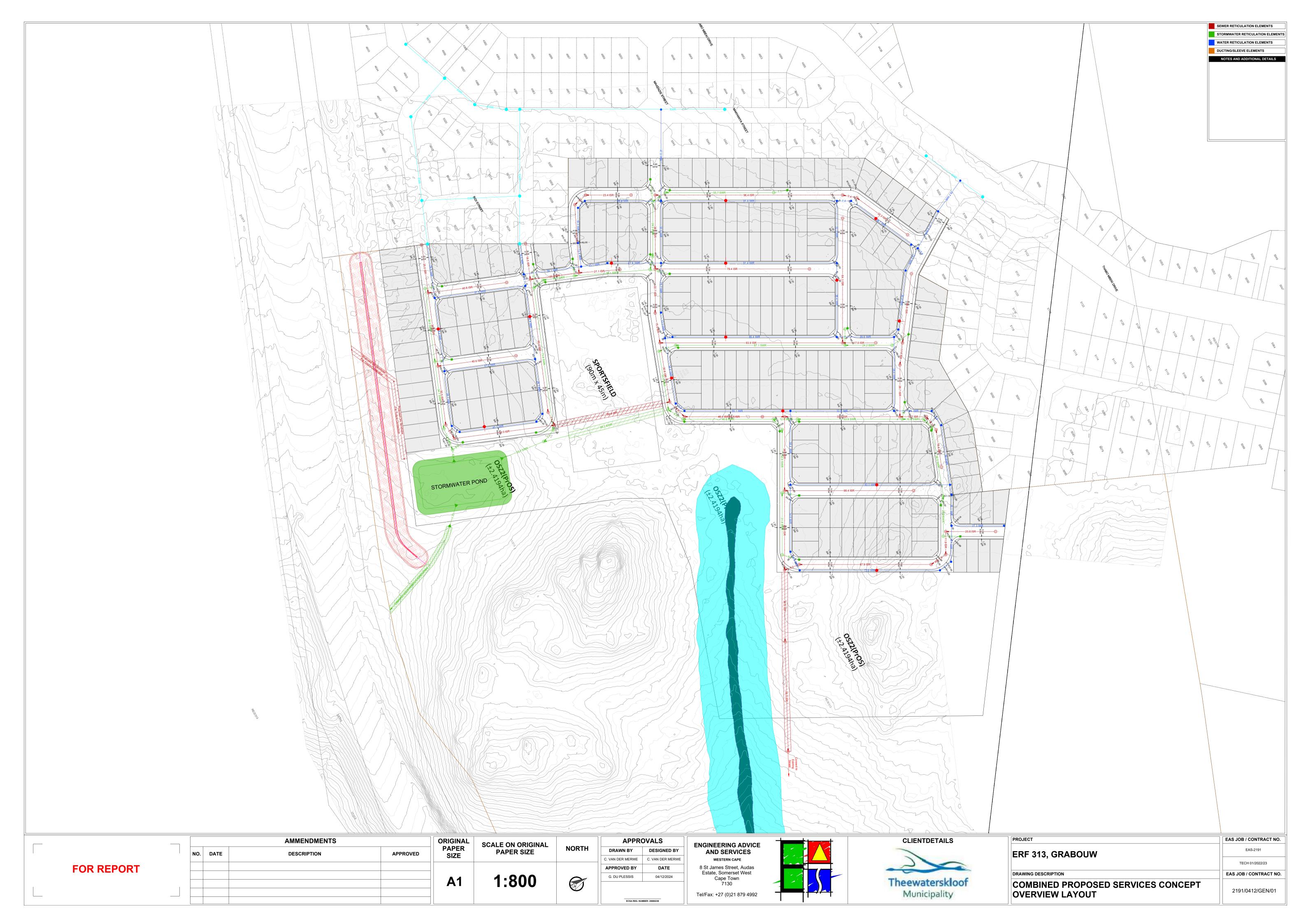


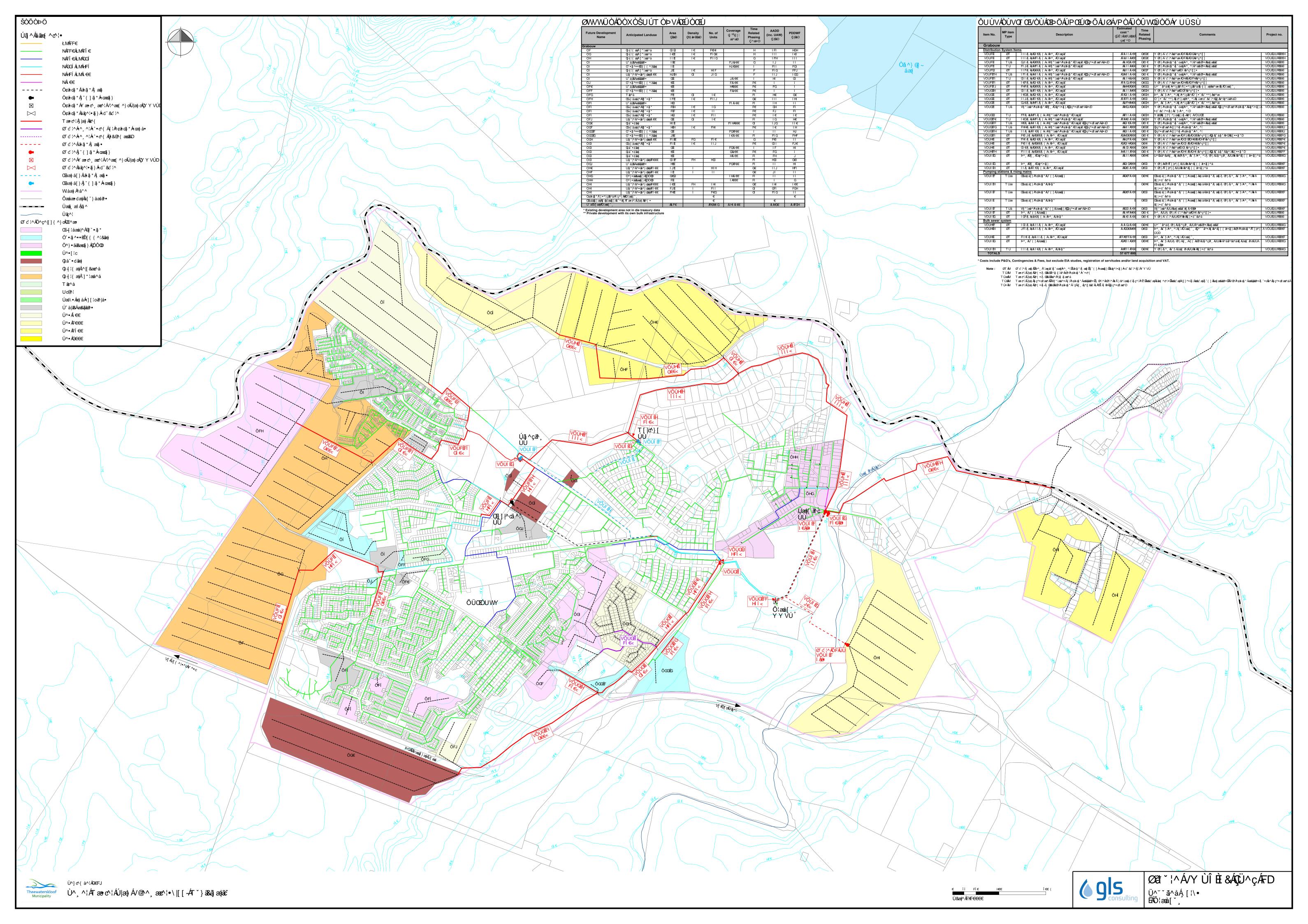


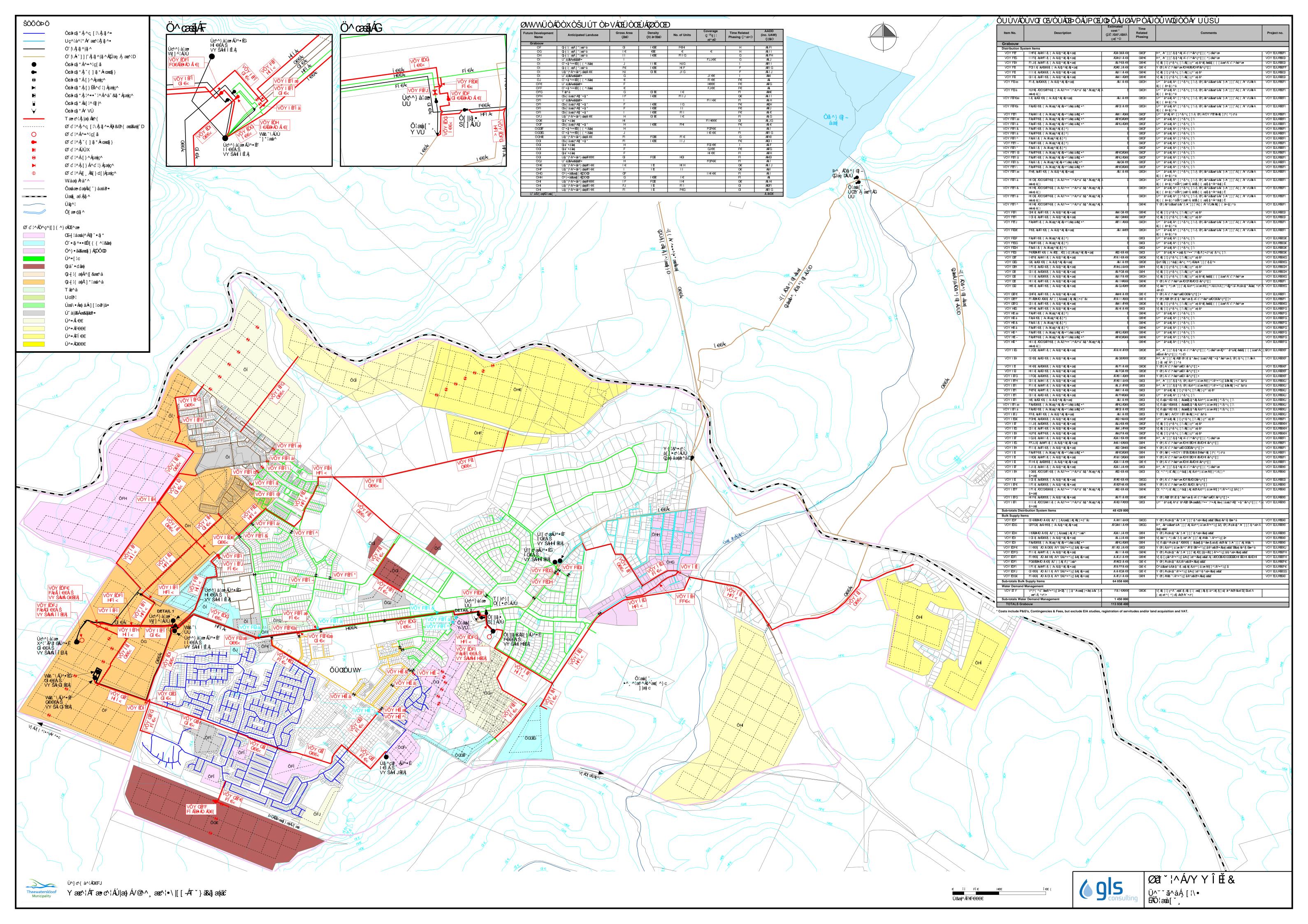




ANNEXURE F: PROPOSED SANITATION LAYOUT







ANNEXURE G: PROPOSED GENERAL SERVICES LAYOUT

ANNEXURE H: GLS BULK SEWER ASSESSMENT

